Apoptosis in Bone Cells

  • B. F. Boyce
  • D. E. Hughes
  • K. R. Wright
  • L. Xing
  • A. Dai
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 25)


Apoptosis is an important regulatory process that, in combination with cell division, determines not only cell numbers, but also the shape and volume of individual organs (Kerr et al. 1972; Wyllie et al. 1980). It is critical during embryonic development for the elimination of superfluous cells, such as the connective tissue between developing fingers (a bone morphogenetic protein (BMP)-dependent process; Zou and Niswander 1996; Yokouchi et al. 1996), and for ensuring that folding and rotation of primitive tissues occur at precise times. High mitotic and low apoptotic rates ensure the rapid growth of highly malignant tumors (Mooney et al. 1995), while induction of massive apoptosis is a major mechanism of action of most chemotherapeutic agents (Lowe et al. 1993) and irradiation therapy (Lee and Bernstein 1993) to reduce tumor volume. Large-scale apoptosis of breast cells follows the cessation of lactation and leads to the associated reduction in breast size, and shrinkage of prostatic tissue after orchidectomy occurs by a similar mechanism (Reed 1994). Because bone is a hormonally sensitive tissue, it is possible that apoptosis of bone cells could be a major determinant of bone shape and volume and, as with the breast and prostate, the amount of tissue present is likely to be regulated by the activity of hormones and growth factors.


Bone Cell Hypertrophic Chondrocytes Osteoclast Apoptosis Osteocyte Death Bone Remodel Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amling M, Neff L, Tanaka S, Inoue D, Kuida K, Weir E, Philbrick WM, Broadus AE, Baron R (1997) Bc1–2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol 136: 205–213PubMedCrossRefGoogle Scholar
  2. Arends MJ, Morris RJ, Wyllie AH (1990) Apoptosis: The role of the endonuclease. Am J Path 136: 593–608Google Scholar
  3. Arndt-Jovin DJ, Jovin TM (1977) Analysis and sorting of living cells accord- ing to deoxyribonucleic acid content. J Histochem Cytochem 25: 585–589PubMedCrossRefGoogle Scholar
  4. Arnett TR, Lindsay R, Kilb JM, Moonga BS, Spowage M, Dempster D (1996) Selective toxic effects of tamoxifen on osteoclasts: comparison with the effects of estrogen. J Endocrinol 149: 503–508PubMedCrossRefGoogle Scholar
  5. Beg AA, Baltimore D (1996) An essential role for NF-kB in preventing TNFa-induced cell death. Science 274: 782–784PubMedCrossRefGoogle Scholar
  6. Bellido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer H, Dalrymple SA, Murray R, Manolagas SC (1995) Regulation of interleukin-6, osteoclasto-genesis, and bone mass by androgens. J Clin Invest 95: 2886–2895PubMedCrossRefGoogle Scholar
  7. Boyce BF, Yoneda T, Lowe C, Soriano P, Mundy GR (1992) Requirement of pp60°-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 90: 1622–1627PubMedCrossRefGoogle Scholar
  8. Boyce BF, Windle JJ, Reddy SV, Wright K, Leach RJ, Roodman GD (1993) Targeting SV-40 T antigen to the osteoclast in transgenic mice causes osteopetrosis, transformation and apoptosis of osteoclasts. J Bone Miner Res 8: S118Google Scholar
  9. Boyce BF, Wright K, Reddy SV, Koop BA, Story B, Devlin R, Leach RJ, Roodman GD, Windle JJ (1995) Targeting simian virus 40 T antigen to the osteoclast in transgenic mice causes osteoclast tumors and transformation and apoptosis of osteoclasts. Endocrinology 136: 5751–5759PubMedCrossRefGoogle Scholar
  10. Bronckers AL, Goei W, Luo G, Karsenty G, D’Souza RN, Lyaruu DM, Burger EH (1996) DNA fragmentation during bone formation in neonatal rodents assessed by transferase-mediated end labeling. J Bone Miner Res 11: 1281–1291PubMedCrossRefGoogle Scholar
  11. Damoulis PD, Hauschka PV (1997) Nitric oxide acts in conjunction with proinflammatory cytokines to promote cell death in osteoblasts. J Bone Miner Res 12: 412–422PubMedCrossRefGoogle Scholar
  12. Dunstan CR, Evans RA, Hills E, Wong SY, Higgs RJ (1990) Bone death in hip fracture in the elderly. Calcif Tissue Int 47: 270–275PubMedCrossRefGoogle Scholar
  13. Dunstan CR, Somers N, Evans R (1993) Osteocyte death and hip fractures. Calcif Tissue Int 53: S113 - S117PubMedCrossRefGoogle Scholar
  14. Elmardi AS, Katchburian MV, Katchburian E (1990) Electron microscopy of developing calvaria reveals images that suggest that osteoclasts engulf and destroy osteocytes during bone resorption. Calcif Tissue Int 46: 239–245PubMedCrossRefGoogle Scholar
  15. Fadok VA, Voelker DR, Campbell PAS, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148: 2207–2216PubMedGoogle Scholar
  16. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U (1997) Requirement for NF-KB in osteoclast and B cell development. Genes Dev 11: 3482–3496PubMedCrossRefGoogle Scholar
  17. Fuller K, Owens JM, Jagger CJ, Chambers TJ (1993a) M-CSF suppresses osteoclastic apoptosis and switches function from bone resorption to migration/chemotaxis. J Bone Miner Res 8: S384Google Scholar
  18. Fuller K, Owens JM, Jagger CJ, Wilson A, Moss R, Chambers TJ (1993b) Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J Exp Med 178: 1733–1744PubMedCrossRefGoogle Scholar
  19. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119: 493–501PubMedCrossRefGoogle Scholar
  20. Gold R, Schmied M, Rothe G, Zischler H, Breitschopf H, Wekerle H, Lass-mann H (1993) Detection of DNA fragmentation in apoptosis: Application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem 41: 1023–1030Google Scholar
  21. Grigoriadis AE, Wang Z-Q, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF (1994) c-Fos: A key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266: 443–448Google Scholar
  22. Hale AJ, Smith CA, Sutherland LC, Stoneman VEA, Longthorne VL, Culhane AC, Williams GT (1996) Apoptosis: molecular regulation of cell death. Eur J Biochem 236: 1–26PubMedCrossRefGoogle Scholar
  23. Hayman AR, Jones SJ, Boyde A, Foster D, Colledge WH, Carlton MB, Evans MJ, Cox TM (1996) Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 122: 3151–3162PubMedGoogle Scholar
  24. Hoffman B, Liebermann DA (1994) Molecular controls of apoptosis: differentiation/growth arrest primary response genes, proto-oncogenes, and tumor suppressor genes as positive and negative modulators. Oncogene 9: 1807–1812PubMedGoogle Scholar
  25. Horowitz MC (1993) Cytokines and estrogen in bone; anti-osteoporotic effects. Science 260: 626–627PubMedCrossRefGoogle Scholar
  26. Hughes DE, Wright KR, Mundy GR, Boyce BF (1994a) TGF-(31 induces osteoclast apoptosis in vitro. J Bone Miner Res 9: S138Google Scholar
  27. Hughes DE, Wright KR, Sasaki A, Yoneda T, Uy H, Roodman GD, Mundy GR, Boyce BF (1994b) Bisphosphonates induce osteoclast apoptosis in vivo and in vitro, but calcitonin does not. J Bone Miner Res 9: S347Google Scholar
  28. Hughes DE, Jilka R, Manolagas S, Dallas SL, Bonewald LF, Mundy GR, Boyce BF (1995a) Sex steroids promote osteoclast apoptosis in vitro and in vivo. J Bone Miner Res 10: S150Google Scholar
  29. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995b) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10: 1478–1487PubMedCrossRefGoogle Scholar
  30. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-13. Nature Med 2: 1132–1136PubMedCrossRefGoogle Scholar
  31. Hughes DE, Luckman SP, Graham R, Russell G, Rogers MJ (1997) Involvement of the mevalonate pathway in osteoclast apoptosis and the mechanism of action of bisphosphonates. Bone 20: 110SGoogle Scholar
  32. Iotsova V, Caamano J, Loy J, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-KB1 and NF-KB2. Nature Med 3: 1285–1289PubMedCrossRefGoogle Scholar
  33. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13: 793–802PubMedCrossRefGoogle Scholar
  34. Jimi E, Shuto T, Koga T (1995) Macrophage colony-stimulating factor and interleukin-la maintain the survival of osteoclast-like cells. Endocrinology 136: 808–811PubMedCrossRefGoogle Scholar
  35. Jimi E, Ikebe T, Takahashi N, Hirata M, Suda T, Koga T (1996) Interleukin-la activates an NF-KB like factor in osteoclast-like cells. J Biol Chem 271: 4605–4608PubMedCrossRefGoogle Scholar
  36. Kameda T, Ishikawa H, Tsutsui T (1995) Detection and characterization of apoptosis in osteoclasts in vitro. Biochem Biophys Res Comm 207: 753–760PubMedCrossRefGoogle Scholar
  37. Kameda T, Miyazawa K, Yoshihisa M (1996) Vitamin K2 inhibits osteoclastic bone resorbtion by inducing osteoclast apoptosis. Biochem Biophys Res Comm 220: 515–519PubMedCrossRefGoogle Scholar
  38. Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz VL, Kronenberg HM, Mulligan RC (1994) Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev 8: 277–289PubMedCrossRefGoogle Scholar
  39. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239–257Google Scholar
  40. Kitajima I, Nakajima T, Imamura T (1996) Induction of apoptosis in murine clonal osteoblasts expressed by human T-cell leukemia virus type I tax by NF-KB and TNF-a. J Bone Miner Res 11: 200–210PubMedCrossRefGoogle Scholar
  41. Lanske B, Karaplis AC, Lee K, Luz A, Vortkamp A, Pirro A, Karperien M, Defize LHK, HO C, Mulligan RC, Abou-Samra AB, Juppner H, Segre GV, Kronenberg HM (1996) PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273: 663–666PubMedCrossRefGoogle Scholar
  42. Lanyon LE (1993) Osteocytes, strain detection, bone modelling and remodeling. Calcif Tissue Int 53: S102 - S107PubMedCrossRefGoogle Scholar
  43. Lee FD (1993) Importance of apoptosis in the histopathology of drug related lesions in the large intestine. J Clin Pathol 46: 118–122PubMedCrossRefGoogle Scholar
  44. Lee JM, Bernstein A (1993) p53 mutations increase resistance to ionizing radiation. Proc Natl Acad Sci USA 90: 5742–5746Google Scholar
  45. Lee K, Lanske B, Karaplis AC, Deeds JD, Kohno H, Nissenson RA, Kronenberg HM, Segre GV (1996) Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology 137: 5109–5118PubMedCrossRefGoogle Scholar
  46. Lewinson D, Silbermann M (1992) Chondroclasts and endothelial cells collaborate in the process of cartilage resorption. Anat Rec 233: 504–514PubMedCrossRefGoogle Scholar
  47. Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74: 957–967Google Scholar
  48. Luckman SP, Hughes DE, Coxon FP, Graham R, Russell G, Rogers Mi (1998) Nitrogen-containing bisphosphonates inhibit the mevalonte pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13: 581–589PubMedCrossRefGoogle Scholar
  49. Lutton JD, Moonga BS, Dempster DW (1996) Osteoclast demise in the rat: physiological versus degenerative cell death. Exp Physiol 81: 251–260PubMedGoogle Scholar
  50. Martin SJ, Reutelingsperger CPM, McGahon AJ (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus. Inhibition of overexpression of Bc1–2 and Abl. J Exp Med 182: 1545–1557PubMedCrossRefGoogle Scholar
  51. Mooney EE, Ruis Penis JM, O’Neill A, Sweeney EC (1995) Apoptotic and mitotic indices in malignant melanoma and basal cell carcinoma. J Clin Pathol 48: 242–244PubMedCrossRefGoogle Scholar
  52. Mullender MG, van der Meer DD, Huiskes R, Lips P (1996) Osteocyte density changes in aging and osteoporosis. Bone 18: 109–113PubMedCrossRefGoogle Scholar
  53. Ozaki K, Takeda H, Iwahashi H, Kitano S, Hanazawa S (1997) NF-KB inhibitors stimulate apoptosis of rabbit mature osteoclasts and inhibit bone resorption by these cells. FEBS Letters 410: 297–300PubMedCrossRefGoogle Scholar
  54. Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11: 1043–1051PubMedCrossRefGoogle Scholar
  55. Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55: 273–286PubMedCrossRefGoogle Scholar
  56. Patel T, Gores GJ, Kaufman SH (1996) The role of proteases during apoptosis. FASEB J 10: 587–597Google Scholar
  57. Popoff SN, Marks SCJ (1995) The heterogeneity of the osteopetroses reflects the diversity of cellular influences during skeletal development. Bone 17: 437–445PubMedCrossRefGoogle Scholar
  58. Reed JC (1994) Bc1–2 and the regulation of programmed cell death. J Cell Biol 124: 1–6PubMedCrossRefGoogle Scholar
  59. Roach HI, Erenpreisa J, Aigner T (1995) Osteogenic differentiation of hypertrophic chondrocytes involves cell divisions and apoptosis. J Cell Biol 131: 483–494PubMedCrossRefGoogle Scholar
  60. Schwartzberg PL, Xing L, Hoffmann O, Lowell CA, Garrett L, Boyce BF, Var-mus HE (1997) Rescue of osteoclast function by transgenic expression of kinase-deficient src in src-/- mutant mice. Genes Dev 11: 2835–2844PubMedCrossRefGoogle Scholar
  61. Selander KS, Harkonen PL, Valve E, Monkkonen J, Hannuniemi R, Vaananen HK (1996) Calcitonin promotes osteoclast survival in vitro. Mol Cell Endocrinol 122: 119–129PubMedCrossRefGoogle Scholar
  62. Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-1(13. Annu Rev Cell Biol 10: 405–455PubMedCrossRefGoogle Scholar
  63. Soriano P, Montgomery C, Geske R, Bradley A (1991) Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64: 693–702PubMedCrossRefGoogle Scholar
  64. Tomkinson A, Reeve J, Shaw R, Noble B (1997a) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82: 3128–3135PubMedCrossRefGoogle Scholar
  65. Tomkinson A, Gevers E, Reeve J, Noble BS (1997b) The role of estrogen in the control of osteocyte apoptosis. Bone 20: 125Google Scholar
  66. Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, Teitelbaum SL (1997) Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386: 81–84PubMedCrossRefGoogle Scholar
  67. Vermes I, Haanen C, Reutelingsperger CPM (1995) A novel assay for apoptosis: Flow cytometric detection of phopshatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Meth 184: 39–51Google Scholar
  68. Villa P, Kaufmann SH, Earnshaw WC (1997) Caspases and caspase inhibitors. Trends Biochem Sci 22: 388–93PubMedCrossRefGoogle Scholar
  69. Vortkamp A, Lee K, Lanske B, Segre GV, Kronenberg HM, Tabin CJ (1996) Regulation of rate of cartilage differentiation by Indian Hedgehog and PTH-related protein. Science 273: 613–621PubMedCrossRefGoogle Scholar
  70. Wang Z-Q, OVitt C, Grigoriadis AE, Mohle-Steinlein U, Ruther U, Wagner EF (1992) Bone and haematopoietic defects in mice lacking c-Fos. Nature 360: 741–745PubMedCrossRefGoogle Scholar
  71. Weir EC, Philbrick WM, Amling M, Neff LA, Baron R, Broadus AE (1996) Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Pro Natl Acad Sci USA 93: 10240–10245CrossRefGoogle Scholar
  72. White E (1996) Life, death, and the pursuit of apoptosis. Genes Dev 10:1–15 Wright KR, Story B, Hughes DE, Windle J, Reddi S, Roodman GD, MundyGoogle Scholar
  73. GR, Boyce BF (1995) Standard morphology is more sensitive than TUNEL for identification of apoptosis in osteoclasts. J Bone Miner Res 10:S324 Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556Google Scholar
  74. Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: The significance of apoptosis. Int Rev Cytol 68: 251–306Google Scholar
  75. Xing L, Schwartzberg P, Reddy SV, Roodman GD, Mundy GR, Varmus HE, Boyce BF (1996) Induction of osteoclast apoptosis in transgenic mice by a truncated SRC protein. J Bone Miner Res 11: S140Google Scholar
  76. Xing L, Schwartzberg P, Sawyer T, Varmus HE, Boyce BF (1997) Induction of osteoclast apoptosis by mutated src proteins and a src SH2 inhibitor. J Bone Miner Res 12: S109Google Scholar
  77. Yokouchi Y, Sakiyama J, Kameda T, Iba H, Suzuki A, Ueno N, Kuroiwa A (1996) BMP-2/-4 mediate programmed cell death in chicken limb buds. Development 122: 3725–3734PubMedGoogle Scholar
  78. Zou H, Niswander L (1996) Requirement for BMP signaling in interdigital apoptosis and scale formation. Science 272: 738–41PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. F. Boyce
  • D. E. Hughes
  • K. R. Wright
  • L. Xing
  • A. Dai

There are no affiliations available

Personalised recommendations