Advertisement

Inelastic neutron scattering studies of oriented DNA

  • H. Grimm
  • A. Rupprecht
Part of the Centre de Physique des Houches book series (LHWINTER, volume 2)

Abstract

The spectrum of self-correlation of DNA hydrogens has been measured by thermal neutron scattering for two orientations of the helical axis relative to the momentum transfer. Spectra typical for glass formers are observed for energy transfers below 6 meV in the temperature range 200 ≤ T ≤ 300 K. Analysis in terms of coupled oscillatory (phonons) and jump (pseudo-spins) motions results in a spin-phonon coupling energy of ≃ 8 meV and an average jump frequency rising from 10 to 140 μeV in this temperature range. High resolution measurements for 270 K ≤ T ≤ 350 K reveal in addition a much narrower quasielastic component of ≃ 20 μeV which is related to jump distances of ≃ S.4Å. The “glass spectra” are found to be essentially isotropic. Anisotropic contributions to the scattering are identified as being due to compressional waves along the helix and the low lying optical band observed in Raman scattering. Both modes show strong coupling to relaxational modes at the zone center (10-th layer line). It is argued that the observability of the optical band at this position is due to an antiparallel displacement of the base pair centers along the helix direction.

Keywords

Inelastic Neutron Jump Frequency Eigenvalue Density Helical Axis Detector Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Lindsay S.M., Lee S.A., Powell J.W., Weidlich T., Demarco C., Lewen G.D., Tao N.J. and Rupprecht A., Biopolymers 27 (1988) 1015–1043.CrossRefGoogle Scholar
  2. [2]
    Frauenfelder H., Petsko G.A. and Tsernoglou D., Nature 280 (1979) 558–563.ADSCrossRefGoogle Scholar
  3. [3]
    Doster W., Cusack S. and Petry W., Nature 337 (1989) 754–756 and (1990) 1080–1083.ADSCrossRefGoogle Scholar
  4. [4]
    Englander S.W., Kallenbach N.R., Heeger A.J., Krumhansl J.A. and Litwin S., Proc. Natl. Acad. Sci. USA 77 (1980) 7222–7226.ADSCrossRefGoogle Scholar
  5. [5]
    Dauxois T., Peyrard M. and Bishop A.R., (1993) R44–47; Flach S. and Willis C.R., this issue.Google Scholar
  6. [6]
    Chen Y.Z. and Prohofsky E.W., (1994) 873–881.Google Scholar
  7. [7]
    Grimm H. and Rupprecht A., PhysicaB 174 (1991) 291–299.ADSCrossRefGoogle Scholar
  8. [8]
    Rupprecht A., Acta (1966) 494–504.Google Scholar
  9. [9]
    Langan P., Forsyth V.T., Mahendrasingam A., Alexeev D., Fuller W. and Mason S.A., Physica B180 (1992) 759–761.Google Scholar
  10. [10]
    Fuller W., Forsyth V.T., private communication.Google Scholar
  11. [11]
    e.g. Hansen J.P. and McDonald I.R., Theory of simple liquids (Academic Press, 1986) pp. 303–310.CrossRefGoogle Scholar
  12. [12]
    Yamada Y., Takatera H., and Huber D.L., J.Phys.Soc.Japan 36 (1974) 641–648.ADSCrossRefGoogle Scholar
  13. [13]
    Capellmann H., Biem W., Z.f.Phys.209 (1968) 276–288.ADSCrossRefGoogle Scholar
  14. [14]
    H. Grimm, H. Stiller, C.F. Majkrzak, A. Rupprecht and U. Dahlborg, Phys.Rev.Lett.59 (1987) 1780–1783.ADSCrossRefGoogle Scholar
  15. [15]
    Urabe H., Sugawara Y., Tsukakoshi M., and Kasuya T., J.Chem.Phys.95 (1991) 5519–5523.ADSCrossRefGoogle Scholar
  16. [16]
    Tominaga Y., Shida M., Kubota K., Urabe H., Nishimura Y., and Tsuboi M., J. Chem. Phys.83 (1985) 5972–5975.ADSCrossRefGoogle Scholar
  17. [17]
    Prabhu V.V., Schroll W.K., van Zandt L.L., and Prohofsky E.W., Phys.Rev.Lett.60 (1988) 1587–1588.ADSCrossRefGoogle Scholar
  18. [18]
    Arnott S., and Hukins D.W.L., Biochem. Biophys. Res. Comm. 47 (1972) 1504–1509;CrossRefGoogle Scholar
  19. [18a]
    Arnott S., and Seising E., J.Mol.Biol. 98 (1975) 265–269.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H. Grimm
    • 1
  • A. Rupprecht
    • 2
  1. 1.Institut für FestkörperforschungForschungszentrum Jülich GmbHJülichGermany
  2. 2.Arrhenius LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations