Advertisement

Dynamic form factor for the Yomosa model for the energy transport in proteins

  • A. Neuper
  • F. G. Mertens
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 2)

Abstract

During the conference it showed up that there is a need to see the fingerprints of various nonlinear interactions in neutron scattering data, i.e. in dynamic form factors S(q, ω). This interest was present e.g. in the field of DNA and protein research.

Keywords

Form Factor Myosin Head Toda Lattice Jacobian Elliptic Function Dynamic Structure Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yomosa S., J. Phys. Soc. Japan 53 (1984) 3692 – 3698.ADSCrossRefGoogle Scholar
  2. [2]
    Yomosa S., Phys. Rev. A 32 (1985) 1752 – 1758.ADSCrossRefGoogle Scholar
  3. [3]
    Svoboda K., Schmidt C. F., Schnapp B. J., and Block S. M., Nature 365 (1993) 721 – 727.ADSCrossRefGoogle Scholar
  4. [4]
    Finer J. T., Simmons R. M., and Spudich J. A., Nature 368 (1994) 113 – 119.ADSCrossRefGoogle Scholar
  5. [5]
    Howard J., Nature 368 (1994) 98 – 99.ADSCrossRefGoogle Scholar
  6. [6]
    Astumian R. D. and Bier M.,Phys. Rev. Lett. 72 (1994) 1766 – 1769.ADSCrossRefGoogle Scholar
  7. [7]
    Toda M., J. Phys. Soc. Japan 22 (1967) 431 – 436.ADSCrossRefGoogle Scholar
  8. [8]
    Toda M., Prog. Theor. Phys. Suppl. 45 (1970) 174 – 200.ADSCrossRefGoogle Scholar
  9. [9]
    Toda M., Theory of Nonlinear Lattices (Springer, Berlin, 1989).MATHCrossRefGoogle Scholar
  10. [10]
    Hénon M., Phys. Rev. B 9 (1974) 1921 – 1923.MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Flaschka H., Phys. Rev. B 9 (1974) 1926 – 1925.MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    Manakov S. V., Zh. Eksp. Teor. Fiz. 67 (1974) 543 – 555.MathSciNetADSGoogle Scholar
  13. [13]
    Büttner H. and Mertens F. G., Solid State Comm. 29 (1979) 663 665.Google Scholar
  14. [14]
    Schneider T. and Stoll E. Classical statistical mechanics of the Toda lattice: Static and dynamic properties. ( 1980, unpublished ).Google Scholar
  15. [15]
    Mertens F. G. and Büttner H., Phys. Lett. A 84 (1981) 335 – 337.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    Bolterauer H. and Opper M., Phys. Lett. A 83 (1981) 69 – 70.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    Yoshida F. and (Sakuma T., Phys. Rev. A 25 (1982) 2750 – 2762.MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    Theodorakopoulos N., Phys. Rev. Lett. 53 (1984) 871 – 874.ADSCrossRefGoogle Scholar
  19. [19]
    Theodorakopoulus N., “Counting solitons and phonons in the Toda lattice”, Statics and Dynamics of Nonlinear Systems, Ettore Majorana Centre, Erice, Italy, July 1st -11th 1983, G. Benedek, H. Bilz, and R. Zeyher Eds., (Springer Verlag, Berlin, 1983), pp. 271 – 277.CrossRefGoogle Scholar
  20. [20]
    Theodorakopoulus N. and Bacalis N. C, “Thermally excited lattice solitons”, Proton transfer in hydrogen-bonded systems, Heraklion, Crete, May 21st – 25th 1991, T. Bountis Eds. (Plenum Press, New York, 1992) pp. 131 – 138.CrossRefGoogle Scholar
  21. [21]
    Takayama H. and Ishikawa M., Prog. Theor. Phys. 76 (1986) 820 – 836.MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    Bolterauer H. and Opper M., Z. Phys. B 42 (1981) 155 – 161.ADSCrossRefGoogle Scholar
  23. [23]
    Bolterauer H. and Opper M., Private communication, ( 1981, unpublished ).Google Scholar
  24. [24]
    Schneider T. and Stoll E., Phys. Rev. Lett. 45 (1980) 997 – 1000.ADSCrossRefGoogle Scholar
  25. [25]
    Mertens F. G. and Büttner H., J. Phys. A: Math. Gen 15 (1982) 1831 – 1839.ADSCrossRefGoogle Scholar
  26. [26]
    Diederich S., Phys. Rev. B 24 (1981) 3186 – 3192.MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    Diederich S., Phys. Rev. B 24 (1981) 3192 – 3203.ADSGoogle Scholar
  28. [28]
    Cuccoli A., Spicci M., Tognetti V., and Vaia R., Phys. Rev. B 47 (1993) 7859 -7868.ADSCrossRefGoogle Scholar
  29. [29]
    Schneider T., “Classical statistical mechanics of lattice dynamic model systems: Transfer integral and molecular dynamics studies”, Statics and Dynamics of Nonli­near Systems, Ettore Majorana Centre, Erice, Italy, July 1st – 11th 1983, G. Benedek, H. Bilz, and R. Zeyher Eds., (Springer Verlag, Berlin, 1983), pp. 212 – 241.CrossRefGoogle Scholar
  30. [30]
    Diederich S., Phys. Lett. A 85 (1981) 233 – 235.ADSCrossRefGoogle Scholar
  31. [31]
    Abramowitz M. and Stegun I. A. Eds., Pocketbook of Mathematical Functions (Verlag Harry Deutsch, Thun, 1984).MATHGoogle Scholar
  32. [32]
    Mikeska H. J., Solid State Comm. 13 (1973) 73 – 76.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. Neuper
    • 1
  • F. G. Mertens
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations