Skip to main content

Exact two-quantum states of the semiclassical Davydov model and their thermal stability

  • Conference paper
  • 112 Accesses

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 2))

Abstract

The Davydov model describes a possible mechanism for energy transfer in protein α-helices. These are secondary structures that occur in many proteins when a linear sequence of amino acids is folded into a helix, which is stabilized by hydrogen-bonded spines, i.e. one-dimensional chains with the following structure:

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davydov, A.S. and Kislukha, N.I., Phys. Stat. Sol. B 59, (1973) 465–470;

    Article  ADS  Google Scholar 

  2. Davydov, A.S., J. Theor. Biol. 38, (1973) 559–569;

    Article  Google Scholar 

  3. Davydov, A.S. and Kislukha, N.I., Phys. Stat. Sol. B 75, (1976) 735–742;

    Article  ADS  Google Scholar 

  4. Davydov, A.S., J. Theor. Biol. 66 (1977) 379–387;

    Article  Google Scholar 

  5. Davydov, A.S., Physica D 3 (1981) 1–22;

    Article  ADS  Google Scholar 

  6. Davydov, A.S., Int. J. Quant. Chem. 16 (1979) 5–17;

    Article  Google Scholar 

  7. Davydov, A.S., Biology and Quantum Mechanics (Pergamon, New York, 1982);

    Google Scholar 

  8. Davydov, A.S., Sov. Phys. Usp. 25 (1982) 898–918;

    Article  ADS  Google Scholar 

  9. Brizhik, L.S. and Davydov, A.S., Phys. Stat. Sol. B 115 (1983) 615–630;

    Article  MathSciNet  ADS  Google Scholar 

  10. Davydov, A.S. Phys. Stat. Sol. B 138 (1986) 559–576;

    Article  ADS  Google Scholar 

  11. Davydov, A.S. J. Biol. Phys. 18 (1991) 111–125.

    Google Scholar 

  12. Wang, X., Brown, D.W. and Lindenberg, K. Phys. Rev. Lett. 62 (1989) 1796–1799.

    Article  ADS  Google Scholar 

  13. See e.g. Vitali, D., Allegrini, P. and Grigolini, P. Chem. Phys. 180 (1994) 297–318.

    Article  ADS  Google Scholar 

  14. Cruzeiro-Hansson, L. and Kenkre, V.M. Phys Lett A 190 (1994) 59–64.

    Article  ADS  Google Scholar 

  15. Kenkre, V.M. and Grigolini, P. Z. Phys. b 90 247–253.

    Google Scholar 

  16. Grigolini, P., Wu, H.-L. and Kenkre, V.M. Phys. Rev. B 40 (1989) 7045–7053;

    Article  ADS  Google Scholar 

  17. Kenkre, V.M. Physica D 68 (1993) 153–161.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Lomdahl, P.S. and Kerr, W.C. Phys. Rev. Lett. 55 (1985) 1235–1238;

    Article  ADS  Google Scholar 

  19. Lawrence, A.F., McDaniel, J.C., Chang, D.B., Pierce, B.M. and Birge, R.R. Phys. Rev A 33 (1986) 1188–1201.

    Article  ADS  Google Scholar 

  20. Motschmann, H., Förner, W. and Ladik, J., J. Phys. Condens. Matter 1 (1989) 5083–5093;

    Article  ADS  Google Scholar 

  21. Förner, W., J. Phys. Condens. Matter 3, (1991) 4333–4348;

    Article  ADS  Google Scholar 

  22. Förner, W., Phys. Rev. A 44 (1991) 2694–2708;

    Article  ADS  Google Scholar 

  23. Förner, W., J. Comput. Chem. 13 (1992) 275–313;

    Article  Google Scholar 

  24. Förner, W., J. Phys. Condens. Matter 4, (1992) 1915–1923;

    Article  ADS  Google Scholar 

  25. Förner, W., J. Phys. Condens. Matter 5 (1993) 803–822;

    Article  ADS  Google Scholar 

  26. Förner, W., J. Phys. Condens. Matter 5 (1993) 823–840;

    Article  ADS  Google Scholar 

  27. Förner, W., J. Phys. Condens. Matter 5 (1993) 3883–3896;

    Article  ADS  Google Scholar 

  28. Förner, W., J. Phys. Condens. Matter 5 (1993) 3897–3916.

    Article  ADS  Google Scholar 

  29. L. Cruzeiro-Hansson, Physica D 68 (1993) 65–67.

    Article  ADS  Google Scholar 

  30. Mauri, F., Car, R. and Tosatti, E. Europhys. Lett. 24 (1993) 431–436.

    Article  ADS  Google Scholar 

  31. Tolman, R.C., The Principles of Statistical Mechanics, (Oxford Univ. Press, London, 1946) pp. 342–356.

    Google Scholar 

  32. Wakabayashi, K., Tokunaga, M., Kohno, I., Sugimoto, Y., Hamanaka, T., Takezawa, Y., Wakabayashi, T. and Amemiya, Y. Science 258 (1992) 443–447.

    Article  ADS  Google Scholar 

  33. Rayment, I., Rypniewski, W.R., Schmidt-Bäse, K., Smith, R., Tomchick, D.R., Benning, M.M., Winkelmann, D.A., Wesenberg, G. and Holden, H.M. Science 261 (1993) 50–58;

    Article  ADS  Google Scholar 

  34. Rayment, I., Holden, H.M., Whittaker, M., Yohn, C.B., Lorentz, M., Holmes, K.C. and Milligan, R.A. Science 261 (1993) 58–65.

    Article  ADS  Google Scholar 

  35. Yanagida, T., Arata, T. and Oosawa, F. Nature 316 (1985) 366–369;

    Article  ADS  Google Scholar 

  36. Saito, K., Aoki, T., Aoki, T. and Yanagida, T. Biophys. J. 66 (1994) 769–777.

    Article  ADS  Google Scholar 

  37. Finer, J.T., Simmons, R.M. and Spudich, J.A. Nature 368 (1994) 113–119.

    Article  ADS  Google Scholar 

  38. Irving, M., Lombardi, V., Piazzesi, G. and Ferenczi, M.A. Nature 357 (1992) 156–158.

    Article  ADS  Google Scholar 

  39. Yanagida, T., Harada, Y. and Ishijima, A. TIBS 18 (1993) 319–324.

    Google Scholar 

  40. Huxley, H.E. J. Biol. Chem. 265 (1990) 8347–8350.

    Google Scholar 

  41. D.E. Green, Ann. N. Y. Acad. Sci. 227 (1974) 6–45.

    Article  ADS  Google Scholar 

  42. V.P. Skulachev, Eur. J. Biochem 208 (1992) 203–209.

    Article  Google Scholar 

  43. G. Careri and J. Wyman, Proc. Nat. Acad. Sci. USA 81 (1984) 4386–4388.

    Article  ADS  Google Scholar 

  44. Scott, A., Phys. Rep. 217 (1992) 1–67 and references therein.

    Article  ADS  Google Scholar 

  45. Knox, R.S., Maiti, S. and Wu, P. “Search for Remote Transfer of Vibrational Energy in Proteins”, Davydov’s Soliton Revisited. Self-Trapping of Vibrational Energy in Protein, Thisted, Denmark, July 30 — August 5, 1989, P.L. Christiansen and A.C. Scott (Plenum, N.Y., 1990) pp. 401–412.

    Google Scholar 

  46. Kenkre, V.M., Rudolph, W. and Scott, A.C., unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Peyrard

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cruzeiro-Hansson, L., Kenkre, V.M. (1995). Exact two-quantum states of the semiclassical Davydov model and their thermal stability. In: Peyrard, M. (eds) Nonlinear Excitations in Biomolecules. Centre de Physique des Houches, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08994-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08994-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59250-1

  • Online ISBN: 978-3-662-08994-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics