Conformational dynamics of proteins: beyond the nanosecond time scale

  • H. Grubmüller
  • N. Ehrenhofer
  • P. Tavan
Part of the Centre de Physique des Houches book series (LHWINTER, volume 2)


Protein motions and functional processes in proteins occur on a wide range of time scales. The fastest atomic motions take place on a femtosecond time scale. Fast biochemical reactions like the primary steps in photosynthesis last few picoseconds. Most biochemical reactions like enzymatic processes take much longer — microseconds or even few milliseconds. They are often accompanied by larger structural rearrangements in the protein, called conformational transitions[l], which are characterized by transition times of nanoseconds or much longer. A prominent example for an extremely slow conformational transition, with a transition time of many years, is the one which is believed to be responsible for the pathogenic effect of prions[2]. Often, conformational transitions constitute functional important motions, as for the gating of channel proteins or in protein folding.


Configurational Space Conformational Transition Energy Landscape Heat Bath Protein Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ansari, J. Berendzen, D. Braunstein, B. R. Cowen, H. Frauenfelder, M. K. Hong, I. E. T. Iben, J. B. Johnson, P. Ormos, T. B. Sauke, R. Scholl, A. Schulte, P. J. Steinbach, J. Vittitow, R. D. Young, Biophys. Chem. 26 (1987) 337.CrossRefGoogle Scholar
  2. [2]
    D. A. Kocisko, et al., Nature 370 (11 Aug 1994) 471.CrossRefADSGoogle Scholar
  3. [3]
    J. A. McCammon, B. R. Celin, M. Karplus, Nature 267 (1977) 585.CrossRefADSGoogle Scholar
  4. [4]
    B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, M. Karplus, J. Comp. Chem. 4 (1983) 187.CrossRefGoogle Scholar
  5. [5]
    W. F. van Gunsteren, H. J. C. Berendsen, Angew. Chem. Int. Ed. Engl. 29 (1990) 992.CrossRefGoogle Scholar
  6. [6]
    M. Levitt, S. Lifson, J. Molec. Biol. 46 (1969) 269.CrossRefGoogle Scholar
  7. [7]
    H. Frauenfelder, S. G. Sligar, P. G. Wolynes, Science 254 (1991) 1598.CrossRefADSGoogle Scholar
  8. [8]
    H. Grubmüller, P. Tavan, J. Chem. Phys. (Sept. 1994). In press.Google Scholar
  9. [9]
    H. Grubmüller, thesis, Technische Universität München (Jan. 1994).Google Scholar
  10. [10]
    H. Frauenfelder, Biophys. J. 47 (1985) 35.Google Scholar
  11. [11]
    R. Elber, M. Karplus, Science 235 (1987) 318.CrossRefADSGoogle Scholar
  12. [12]
    N. Go, T. Noguti, Chem. Scr. 29A (1989) 151.Google Scholar
  13. [13]
    N. Ehrenhofer, thesis, Ludwig-Maximilians-Universität München (1994).Google Scholar
  14. [14]
    A. Ansari, J. Berendzen, S. F. Browne, H. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder, R. D. Young, Proc. Natl. Acad. Sci. USA 82 (1985) 5000.CrossRefADSGoogle Scholar
  15. [15]
    D. R. Dersch, P. Tavan, “Control of annealing in minimal free energy vector quantization”, Proceedings of the IEEE International Conference on Neural Networks ICNN’94, S. K. Orlando, Florida, June 28-July 2, 1994, Rogers and D. W. Ruck, Eds. (IEEE, Piscataway, U.S.A, 1994) pp. 698–703.Google Scholar
  16. [16]
    K. V. Mardia, J. T. Kent, J. M. Bibby, “Multivariate Analysis” (Academic Press, London, 1979).MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • H. Grubmüller
    • 1
  • N. Ehrenhofer
    • 1
  • P. Tavan
    • 1
  1. 1.Institut für Medizinische OptikUniversität MünchenMünchenGermany

Personalised recommendations