Skip to main content

Isothermal Molecular Dynamics in Classical and Quantum Mechanics

  • Chapter
Nonequilibrium Physics at Short Time Scales
  • 405 Accesses

Abstract

The typical problem in statistical physics is the determination of ensemble averages given in terms of phase-space integrals (classical case) or traces of the density matrix (quantum case). Especially for strongly correlated, i.e. interacting many-body systems, the direct evaluation of these averages is usually impossible. Therefore, a large number of different approaches has been developed. In this contribution, we will focus on finite temperature or canonical ensemble properties.

A specific approach due to Nosé is based on classical molecular dynamics (MD) and time averages [1]. It permits one to calculate canonical ensemble averages by averaging over an ergodic deterministic isothermal time evolution. The key idea is to add an additional degree of freedom to the original system in order to mimic the influence of the heat bath on the dynamics. Nowadays, the most reliable (ergodic) techniques are the so-called Nosé-Hoover chains and the demon method.

Static finite temperature properties of quantum systems have been determined very successfully with path integral Monte Carlo (MC) techniques in the past, e.g., for liquid 4He [2]. A drawback of these methods is the fact that MC dynamics is highly artificial and non-physical. Therefore, the calculation of dynamical quantities is inhibited. Surprisingly, the calculation of path integrals using classical isothermal MD methods is also possible on the basis of the “classical isomorphism” due to Feynman [3], but this method does not shed light on the real-time quantum dynamics of the system either.

Hence, a more direct isothermal quantum molecular dynamics scheme is highly desirable in order to realistically describe the dynamics of a quantum system at finite temperature. As a first step, we are able to generalize the method of Nosé and Hoover to a genuine quantum system, the ubiquitous harmonic oscillator. The method is valid both for a single particle and for ideal Fermi and Bose gases. We discuss possibilities of further generalization.

In our contribution we review the various classical thermostat methods and sketch fields of applicability. We also discuss indirect (path integrals) and direct (our own work) applications of thermostat methods in quantum mechanical many-body problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Nosé: Prog. Theor. Phys. Suppl. 103, 1 (1991)

    Article  ADS  Google Scholar 

  2. D. Ceperley: Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  3. R.P. Feynman: Statistical Mechanics, (W.A. Benjamin, Inc., Reading, MA, 1972 )

    Google Scholar 

  4. M.E. Tuckerman, G.J. Martyna: J. Phys. Chem. B 104, 159 (2000)

    Article  Google Scholar 

  5. W. Kob: J. Phys. Cond. Matter 11, R85 (1999)

    Article  ADS  Google Scholar 

  6. H. Feldmeier, J. Schnack: Rev. Mod. Phys. 72, 655 (2000)

    Article  ADS  Google Scholar 

  7. D. Mentrup, J. Schnack: Physica A 297, 337 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M.E. Tuckerman, C.J. Mundy, G.J. Martyna: Europhys. Lett. 45, 149 (1999)

    Article  ADS  Google Scholar 

  9. G.J. Martyna, M.L. Klein, M. Tuckerman: J. Chem. Phys. 97, 2635 (1992)

    Article  ADS  Google Scholar 

  10. D. Kusnezov, A. Bulgac, W. Bauer: Ann. of Phys. 204, 155 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. M.E. Tuckerman, A. Hughes: Proc. CECAM conference on “Computer simulation of rare events and quantum dynamics in condensed phase systems”, 311 (1997)

    Google Scholar 

  12. J.R. Klauder, B.-S. Skagerstam: Coherent states, ( World Scientific Publishing, Singapore, 1985 )

    MATH  Google Scholar 

  13. W.P. Schleich: Quantum Optics in Phase Space, ( Wiley-VCH, Berlin, 2001 )

    Book  MATH  Google Scholar 

  14. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari: Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  15. H. Saito, M. Ueda: Phys. Rev. Lett. 86, 1406 (2001)

    Article  ADS  Google Scholar 

  16. C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman: Phys. Rev. Lett. 78, 586 (1997)

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mentrup, D., Schnack, J. (2004). Isothermal Molecular Dynamics in Classical and Quantum Mechanics. In: Morawetz, K. (eds) Nonequilibrium Physics at Short Time Scales. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08990-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08990-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05745-8

  • Online ISBN: 978-3-662-08990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics