Skip to main content

Second Law of Thermodynamics, but Without a Thermodynamic Limit

  • Chapter
Nonequilibrium Physics at Short Time Scales

Abstract

A geometric foundation of thermo-statistics is presented with only the axiomatic assumption of Boltzmann’s principle S(E, N, V) = k In W. This relates the entropy to the geometric area e S(E,N,V) of the manifold of constant energy in the (finite) N-body phase space. From this principle, all of thermodynamics and especially all phenomena of phase transitions and critical phenomena can be unambiguously identified for even small systems. Within Boltzmann’s principle, Statistical Mechanics becomes a geometric theory addressing the whole ensemble or the manifold of all points in phase space which are consistent with the few macroscopic conserved control parameters. This interpretation leads to a straight derivation of irreversibility and the second law of thermodynamics out of the time-reversible microscopic mechanical dynamics. It is the whole ensemble that spreads irreversibly over the accessible phase space not the single N-body trajectory. This is all possible without invoking the thermodynamic limit, extensivity, or concavity of S(E, N, V). Without the thermodynamic limit or at phase-transitions the systems are usually not self-averaging, i.e. do not have a single peaked distribution in phase space. The main obstacle against the second law, the conservation of the phase-space volume due to Liouville, is overcome by realizing that a macroscopic theory like Thermodynamics cannot distinguish a fractal distribution in phase space from its closure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Einstein. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik, 17: 132, 1905.

    Article  ADS  MATH  Google Scholar 

  2. L. Boltzmann. Uber die Beziehung eines allgemeinen mechanischen Satzes zum Hauptsatz der Wärmelehre. Sitzungsbericht der Akadamie der Wissenschaften, Wien, 2: 67–73, 1877.

    Google Scholar 

  3. L. Boltzmann. Uber die Begründung einer kinetischen Gastheorie auf anziehende Kräfte allein. Wiener Berichte, 89: 714, 1884.

    MATH  Google Scholar 

  4. E. Schrödinger. Statistical Thermodynamics, a Course of Seminar Lectures, delivered in January-March 1944 at the School of Theoretical Physics. Cambridge University Press, London, 1946.

    Google Scholar 

  5. D.H.E. Gross. Microcanonical thermodynamics: Phase transitions in “Small” systems, volume 66 of Lecture Notes in Physics. World Scientific, Singapore, 2001.

    Google Scholar 

  6. D.H.E. Gross and E. Votyakov. Phase transitions in “small” systems. Eur. Phys. J. B, 15: 115–126, (2000)

    ADS  Google Scholar 

  7. D.H.E. Gross. Micro-canonical statistical mechanics of some nonextensive systems. Chaos, Solitons, and Fractals, 13: 417–430, 2002;

    Article  ADS  MATH  Google Scholar 

  8. A. Pais. Subtle is the Lord. Oxford University Press, Oxford, 1982.

    Google Scholar 

  9. D.H.E. Gross and M.E. Madjet. Fragmentation phase transition in atomic clusters IV-the relation of the fragmentation phase transition to the bulk liquid-gas transition. Z. Physik B,104:541–551, 1997; and http://xxx.lanl.gov/abs/cond-mat/9707100.

    Google Scholar 

  10. D.H.E. Gross and M.E. Madjet. Cluster fragmentation, a laboratory for thermodynamics and phase-transitions in particular. In Abe, Arai, Lee, and Yabana, editors, Proceedings of “Similarities and Differences between Atomic Nuclei and Clusters”,pages 203–214, Tsukuba, Japan 97, 1997. The American Institute of Physics.

    Google Scholar 

  11. D.H.E. Gross. Phase transitions without thermodynamic limit. In X. Campi J.P. Blaizot, M. Ploszaiczak, editor, Proceedings of the Les Houches Workshop on Nuclear Matter in Different Phases and Transitions,pages 3142, Les Houches, France, 31.3–10.4.98, 1999; http://xxx.lanl.gov/abs/condmat/9812120. Kluwer Acad. Publ.

    Google Scholar 

  12. E.V. Votyakov, H.I. Hidmi, A. De Martino, and D.H.E. Gross. Microcanonical mean–field thermodynamics of self–gravitating and rotating systems. Phys. Rev. Lett.,89:031101–1–4; http://arXiv.org/abs/cond–mat/0202140, (2002).

    Google Scholar 

  13. J. Bricmont. Science of chaos or chaos in science? Physicalia Magazine, Proceedings of the New York Academy of Science, to apear, pages 1–50, 2000.

    Google Scholar 

  14. N.S. Krylov. Works on the Foundation of Statistical Physics. Princeton University Press, Princeton, 1979.

    Google Scholar 

  15. R.F. Fox. Entropy evolution for the baker map. Chaos, 8: 462–465, 1998.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T. Gilbert, J.R.Dorfman, and P.Gaspard. Entropy production, fractals, and relaxation to equilibrium. Phys. Rev. Lett., 85:1606,nlin.CD/0003012, 2000.

    Google Scholar 

  17. C. Beck and E.G.D. Cohen. Superstatistics. tond-mat/0205097, 2002.

    Google Scholar 

  18. C. Tsallis. Entropie nonextensivity: a possible measure of complexity. Chaos, Solitons, and Fractas, page 13, 2002.

    Google Scholar 

  19. H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, Mass, 1959.

    Google Scholar 

  20. J.L. Lebowitz. Microscopic origins of irreversible macroscopic behavior. Physic. A, 263: 516–527, 1999.

    Article  MathSciNet  ADS  Google Scholar 

  21. J.L. Lebowitz. Statistical mechanics: A selective review of two central issues. Rev. Mod. Phys., 71: S346–S357, 1999.

    Article  Google Scholar 

  22. Kenneth Falconer. Fractal Geometry-Mathematical Foundations and Applications. John Wiley and Sons, Chichester, New York, Brisbane, Toronto,Singapore, 1990.

    Google Scholar 

  23. E.W. Weisstein. Concise Encyclopedia of Mathemetics. CRC Press, London, New York, Washington D.C:, 1999.

    Google Scholar 

  24. J. Loschmidt. Wiener Berichte, 73: 128, 1876.

    Google Scholar 

  25. E. Zermelo. Wied. Ann., 57: 778–784, 1896.

    Google Scholar 

  26. E. Zermelo. Ober die mechanische Erklärung irreversiblen Vorgänge. Wied. Ann., 60: 392–398, 1897.

    Google Scholar 

  27. E.G.D. Cohen. Boltzmann and statistical mechanics. In Boltzmann’s Legacy, 150 Years after his Birth,pages http://xxx.lanl.gov/abs/cond-mat/9608054, Rome, 1997. Atti dell Accademia dei Lincei.

    Google Scholar 

  28. E.G.D. Cohen. Boltzmann and Statistical Mechanics, volume 371 of Dynamics: Models and Kinetic Methods for Noneguilibrium Many Body Systems. Kluwer, Dordrecht, The Netherlands, e, j. karkheck edition, 2000.

    Google Scholar 

  29. P. Gaspard. Entropy production in open volume preserving systems. J. Stat. Phys, 88: 1215–1240, 1997.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, D. (2004). Second Law of Thermodynamics, but Without a Thermodynamic Limit. In: Morawetz, K. (eds) Nonequilibrium Physics at Short Time Scales. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08990-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08990-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05745-8

  • Online ISBN: 978-3-662-08990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics