Skip to main content

Consequences of Kinetic Nonequilibrium for the Nuclear Equation-of-state in Heavy Ion Collisions

  • Chapter
  • 400 Accesses

Abstract

The equation of state (EOS) in ground state nuclear matter is discussed in terms of relativistic many-body theory. At supra-normal densities the EOS can only be tested in heavy ion collisions. However, highly compressed nuclear matter created in relativistic heavy collisions is to large extent governed by local non-equilibrium. We discuss the influence of such kinetic non-equilibrium on the corresponding EOS. As an idealized scenario for typical situation which occur in heavy ion reactions colliding nuclear matter configurations are studied. An effective EOS constructed for anisotropic momentum configurations shows a significant net softening compared to ground state nuclear matter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)

    Article  ADS  Google Scholar 

  2. W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, 663 (1997)

    Article  ADS  Google Scholar 

  3. N. Herrmann, J.P. Wessels, T. Wienold, Annu. Rev. Nucl. Part. Sci. 49, 581 (1999)

    Google Scholar 

  4. P. Danielewicz, Roy A. Lacey et al., Phys. Rev. Lett. 81, 2438 (1998)

    Article  ADS  Google Scholar 

  5. C. Pinkenburg et al., Phys. Rev. Lett. 83, 1295 (1999)

    Article  ADS  Google Scholar 

  6. J. Aichelin, C.M. Ko, Phys. Rev. Lett. 55, 2661 (1985)

    Article  ADS  Google Scholar 

  7. C. Sturm et al. (KaoS Collaboration), Phys. Rev. Lett. 86, 39 (2001)

    Article  ADS  Google Scholar 

  8. C. Fuchs, A. Faessler, E. Zabrodin, Y.-M. Zheng, Phys. Rev. Lett. 86, 1974 (2001)

    Article  ADS  Google Scholar 

  9. B. Blättel, V. Koch, W. Cassing, U. Mosel, Phys. Rev. C 38, 1767 (1988)

    Article  ADS  Google Scholar 

  10. J. Aichelin, Phys. Rep. 202, 233 (1991)

    Article  ADS  Google Scholar 

  11. G.M. Welke et al., Phys. Rev. C 38, 2101 (1988)

    Article  ADS  Google Scholar 

  12. C. Gale et al., Phys. Rev. C 41, 1545 (1990)

    Article  ADS  Google Scholar 

  13. P. Danielewicz, Nucl. Phys. A 673, 275 (2000)

    Google Scholar 

  14. F. Rami et al. (FOPI Collaboration), Phys. Rev. Lett. 84, 1120 (2000)

    Google Scholar 

  15. C. Fuchs, P. Essler, T. Gaitanos, H.H. Wolter, Nucl. Phys. A 626, 987 (1997)

    Article  ADS  Google Scholar 

  16. A. Lang, B. Blättel, W. Gassing, V. Koch, U. Mosel, K. Weber, Z. Phys. A 340, 287 (1991)

    Google Scholar 

  17. L.W. Neise, H. Stöcker, W. Greiner, J. Phys. G 13, L181 (1987)

    Article  ADS  Google Scholar 

  18. Y.B. Ivanov, V.N. Russkihk, M. Schönhofen, M. Cubero, B.L. Friman, W. Nörenberg, Z. Phys. A 340, 385 (1991)

    Google Scholar 

  19. H. Elsenhans, L. Sehn, A. Faessler, H. Müther, N. Ohtzuka, H.H. Wolter, Nucl. Phys. A 536, 750 (1992)

    Article  ADS  Google Scholar 

  20. L. Sehn, H.H. Wolter, Nucl. Phys. A 601, 473 (1996);

    Article  ADS  Google Scholar 

  21. C. Fuchs, L. Sehn, H.H. Wolter, Nucl. Phys. A A601, 505 (1996)

    Article  ADS  Google Scholar 

  22. H. Mather, A. Polls, Prog. Part. Nucl. Phys. 45, 243 (2000)

    Article  ADS  Google Scholar 

  23. B. ter Haar, R. Malfliet, Phys. Rep. 149, 207 (1987)

    Article  ADS  Google Scholar 

  24. R. Borckmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990)

    Article  ADS  Google Scholar 

  25. W. Zuo, A. Lejeune, U. Lombardo, J.F. Mathiot, Nucl. Phys. A 706, 418 (2002)

    Article  ADS  MATH  Google Scholar 

  26. R. Machleidt, The Meson Theories of Nuclear Forces and Nuclear Structure, Advances in Nuclear Physics 19, 189 (1989)

    Google Scholar 

  27. C. Fuchs, T. Waindzoch, A. Faessler, D.S. Kosov, Phys. Rev. C 58, 2022 (1998)

    Article  ADS  Google Scholar 

  28. T. Gross-Boelting, C. Fuchs, A. Faessler, Nucl. Phys. A 648, 105 (1999)

    Article  ADS  Google Scholar 

  29. W. Botermans, R. Malfliet, Phys. Rep. 198, 115 (1990)

    Article  ADS  Google Scholar 

  30. B.D. Serot, J.D. Walecka, Advances in Nuclear Physics 16, 1 (1986)

    Google Scholar 

  31. C. Fuchs, T. Gaitanos, Nucl. Phys. Nucl. Phys. A 714, 643 (2003)

    Article  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, C. (2004). Consequences of Kinetic Nonequilibrium for the Nuclear Equation-of-state in Heavy Ion Collisions. In: Morawetz, K. (eds) Nonequilibrium Physics at Short Time Scales. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08990-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08990-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05745-8

  • Online ISBN: 978-3-662-08990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics