Skip to main content

Quantum Many-Body Theory and Coherent Potential Approximation

  • Chapter
Nonequilibrium Physics at Short Time Scales

Abstract

The coherent potential approximation (CPA) is a useful method for describing the electron correlations as well as the effects of disorder on electrons. Among the many-body theories using the CPA, the dynamical CPA, the many-body CPA, and the dynamical mean-field theory are reviewed to clarify how these theories use the CPA concept for the description of the electron correlations. The theories characterized by the momentum independent self-energy are shown to interpolate between the weak and strong Coulomb interaction limits, and therefore describe the basic properties of magnetism from metals to insulators, the metalinsulator transition, and the single particle excitations from the Fermi liquid to the insulator. The relation among various theories are clarified. In particular, it is shown that the dynamical CPA, the many-body CPA, and the dynamical mean-field theory are equivalent to each other, so that the theories of itinerant magnetism and those of the strongly correlated electron systems are unified within the single-site approximation. The nonlocal effects on the selfenergy are also discussed beyond the single-site approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example, P. Fulde: Electron Correlations in Molecules and Solids ( Springer, Berlin, 1995 )

    Google Scholar 

  2. P. Soven: Phys. Rev. 156, 809 (1967); 178, 1136 (1969)

    Article  Google Scholar 

  3. D.W. Taylor: Phys. Rev. 156, 1017 (1967)

    Article  ADS  Google Scholar 

  4. B. Velickÿ, S. Kirkpatrick, and H. Ehrenreich: Phys. Rev. 175, 747 (1968)

    Article  ADS  Google Scholar 

  5. F. Yonezawa: Prog. Theor. Phys. 40, 734 (1968)

    Article  ADS  Google Scholar 

  6. R.J. Elliott, J.A. Krumhansl, and P.L. Leath: Rev. Mod. Phys. 46, 465 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  7. H. Ehrenreich and L.M. Schwartz: Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1980), Vol. 30

    Google Scholar 

  8. M. Jarrell and H.R. Krishnamurthy: Phys. Rev. B 63, 125102 (2001)

    Google Scholar 

  9. H. Shiba: Prog. Theor. Phys. 46, 77 (1971)

    Article  ADS  Google Scholar 

  10. J. Hubbard: Proc. Roy. Soc. (London) A281, 401 (1964)

    Article  ADS  Google Scholar 

  11. Y. Kakehashi: Phys. Rev. B 45, 7196 (1992); J. Magn. Magn. Mater. 104–107, 677 (1992)

    Article  ADS  Google Scholar 

  12. Y. Kakehashi: Phys. Rev. B 65, 184420 (2002)

    Google Scholar 

  13. J. Hubbard: Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  14. R.L. Stratonovich: Dokl. Akad. Nauk. SSSR 115, 1097 (1958) [Sov. Phys. -Dokl. 2, 416 (1958)]

    Google Scholar 

  15. M. Cyrot: J. Phys. (Paris) 33, 25 (1972)

    Google Scholar 

  16. J. Hubbard: Phys. Rev. B 19, 2626 (1979); 20, 4584 (1979); 23, 5974 (1981)

    Google Scholar 

  17. H. Hasegawa: J. Phys. Soc. Jpn. 46, 1504 (1979); 49, 178 (1980)

    Google Scholar 

  18. S. Hirooka and M. Shimizu: J. Phys. Soc. Jpn. 43, 70 (1977)

    Article  ADS  Google Scholar 

  19. E. Müller-Hartmann: Z. Phys. B 74, 507 (1989)

    Article  ADS  Google Scholar 

  20. U. Brandt and C. Mielsch: Z. Phys. B 75, 365 (1989); 79, 295 (1991); 82, 37 (1991)

    Google Scholar 

  21. V. Janis: Phys. Rev. B 40, 11331 (1989); Z. Phys. B 83, 227 (1991)

    Google Scholar 

  22. M. Jarrell: Phys. Rev. Lett. 69, 168 (1992)

    Article  ADS  Google Scholar 

  23. A. Georges and G. Kotliar: Phys. Rev. B 45, 6479 (1992)

    Article  ADS  Google Scholar 

  24. F.J. Ohkawa: Phys. Rev. B 46, 9016 (1992)

    Article  ADS  Google Scholar 

  25. W. Metzner and D. Vollhardt: Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  26. Y. Kakehashi: Phys. Rev. B 66, 104428 (2002)

    Google Scholar 

  27. G. Morandi, E. Galleani D’Agliano, F. Napoli, C.F. Ratto: Adv. Phys. 23, 867 (1974)

    Article  ADS  Google Scholar 

  28. S.Q. Wang, W.E. Evanson, and J.R. Schrieffer: Phys. Rev. Lett. 23, 92 (1969); J. Appl. Phys. 41, 1199 (1970)

    Article  ADS  Google Scholar 

  29. Y. Kakehashi and P. Fulde: Phys. Rev. B 32, 1595 (1985)

    Article  ADS  Google Scholar 

  30. R.P. Feynman: Statistical Mechanics (W.A. Benjamin, Inc., London 1972), Chap. 8

    Google Scholar 

  31. D.J. Amit and C.M. Bender: Phys. Rev. B 4, 3115 (1971)

    Article  ADS  Google Scholar 

  32. D.J. Amit and H. Keiter: J. Low Temp. Phys. 11, 603 (1973)

    Article  ADS  Google Scholar 

  33. R.M. Bozorth: Ferromagnetism ( Van Nostrand, Princeton, 1968 )

    Google Scholar 

  34. D.R. Penn: Phys. Rev. Lett. 42, 921 (1979)

    Article  ADS  Google Scholar 

  35. A. Liebsch: Phys. Rev. Lett. 43, 1431 (1979)

    Article  ADS  Google Scholar 

  36. R.H. Victora and L.M. Falicov: Phys. Rev. Lett. 55, 1140 (1985)

    Article  ADS  Google Scholar 

  37. P. Unger, J. Igarashi, and P. Fulde: Phys. Rev. B 50, 10485 (1994)

    Article  ADS  Google Scholar 

  38. D.E. Eastman, F.J. Himpsel, and J.A. Knapp, Phys. Rev. Lett. 40, 1514 (1978); F. J. Himpsel, J.A. Knapp, and D.E. Eastman: Phys. Rev. B 19, 2919 (1979)

    Google Scholar 

  39. W. Eberhardt and E.W. Plummer: Phys. Rev. B 21, 3245 (1980)

    Article  ADS  Google Scholar 

  40. H. Martensson and P.O. Nilsson: Phys. Rev. B 30, 3047 (1984)

    Article  ADS  Google Scholar 

  41. A. Georges, G. Kotliar, W. Krauth, and M.J. Rosenberg: Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  Google Scholar 

  42. J. Schlipf, M. Jarrell, P.G. van Dongen, N. Blümer, S. Kehrein, Th. Pruschke, and D. Vollhardt: Phys. Rev. Lett. 82, 4890 (1999)

    Article  ADS  Google Scholar 

  43. R. Bulla: Phys. Rev. Lett. 83, 136 (1999)

    Article  ADS  Google Scholar 

  44. M. Jarrell, Th. Maier, C. Huscroft, and S. Moukouri: Phys. Rev. B. 64, 195130 (2001)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kakehashi, Y. (2004). Quantum Many-Body Theory and Coherent Potential Approximation. In: Morawetz, K. (eds) Nonequilibrium Physics at Short Time Scales. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08990-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08990-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05745-8

  • Online ISBN: 978-3-662-08990-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics