Thermographic Materials Characterization

  • H. Rösner
  • U. Netzelmann
  • J. Hoffmann
  • W. Karpen
  • V. Kramb
  • N. Meyendorf
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 67)


Thermal techniques are attractive for materials characterization. They provide sophisticated contrast mechanisms and fast, non-contact investigation of large inspection areas. Recent progress in the development of infrared cameras is the key for a wide variety of new applications. In particular, active thermal techniques provide useful information about thermal properties and related quantities as well as geometrical and structural information. “Active” thermography means that, for the purpose of testing, heat is deposited at the surface of the test object or generated within the test object. The surface temperature is monitored as a function of time during or after stimulation. Thermal quantities are determined from the infrared frame sequence. With “Passive” thermography, the temperature of an object is imaged without additional thermal stimulation.


Fatigue Damage Stress Amplitude Infrared Camera Dissipate Heat Energy Scan Acoustic Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Almond DP, Patel PM (1996) Photothermal Science and Techniques, Chapman & Hall, LondonGoogle Scholar
  2. 2.
    Bennett CA, Patty RR (1982) Appl Opt 21:49–54ADSCrossRefGoogle Scholar
  3. 3.
    Balageas DL, Krapez JC, Cielo P (1986) Pulsed photothermal modeling of layered materials. J Appl Phys 59:348ADSCrossRefGoogle Scholar
  4. 4.
    Harwood N, Cummings WM (1991) Thermoelastic Stress Analysis. Adam Hilger, Bristol, pp. 35–43Google Scholar
  5. 5.
    Monchalin JP, Bussière JF (1984) Measurement of near-surface ultrasonics by thermoemissivity. Nondestructive methods for material property determination. Plenum Press, New YorkGoogle Scholar
  6. 6.
    Enke NF (1989) Thermographic stress analysis of isotropic materials. Ph.D. thesis, University of Wisconsin — MadisonGoogle Scholar
  7. 7.
    Thomson W (Lord Kelvin) (1857) On the thermo-elastic and thermomagnetic properties of matter. Quart. J of Pure & Appl Math 1:57–77Google Scholar
  8. 8.
    Vollertsen F, Vogler S (1989) Werkstoffeigenschaften und Mikrostruktur. Carl Hanser, München WienGoogle Scholar
  9. 9.
    Bratina WJ (1966) Internal friction and basic fatigue mechanisms in body-centered cubic metals, mainly iron and carbon steels. Physical acoustics: principles and methods IIIA. Academic Press, New YorkGoogle Scholar
  10. 10.
    Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New YorkGoogle Scholar
  11. 11.
    Puskar A., Golovin SA (1985) Fatigue in materials: cumulative damage processes. Elsevier, New YorkGoogle Scholar
  12. 12.
    Harig H, Middeldorf K, Müller K (1986) Overview on thermometric investigations of fatigue behavior in steels (in German). HTM 41 5:286–296Google Scholar
  13. 13.
    Bratina WJ (1966) Internal Friction and Basic Fatigue Mechanisms in Body-Centered Cubic Metals, Mainly Iron and Carbon Steels. In: Warren PM (ed) Physical Acoustics: Principles and Methods. volume III, Part A: The Effect of Imperfections, Academic Press, New York, pp. 223–285Google Scholar
  14. 14.
    Meyendorf N, Ehrlich S, Nitzsche R (1992) Thermografische Ueberwachung von Schweissprozessen. Bild und Ton 45 3/4:55Google Scholar
  15. 15.
    Lipetzky LG, Novak MR, Perez I, Davis WR (2001) Development of Innovative Nondestructive Evaluation Technologies for the Inspection of Cracking & Corrosion Under Coatings. Technical Report NSWCCD-61-TR-2001/21, Naval Surface Warfare CenterGoogle Scholar
  16. 16.
    Meyendorf N, Netzelmann U, Vetterlein T, Walle G (1998) Non-Contact Characterization of Layers by Thermographic Methods on Examples of Testing Problems from Aircraft and Aerospace Technology. Proceedings of Materials Week, Symposium 2b. MünchenGoogle Scholar
  17. 17.
    Walle G, Karpen W, Netzelmann U, Rösner H, Meyendorf N (1999) Nondestructive Testing with Thermographic Techniques. Technisches Messen, vol. 66, 9:312–321Google Scholar
  18. 18.
    Hoffmann JP, Matikas TE, Sathish S, Khobaib M, Meyendorf N, Netzelmann U (1999) Nondestructive Characterization of Organic Corrosion Protective Coatings on Aluminum Alloy Substrates. 3rd Annual Report for DARPA-MURI, Grant Number F49620–96–1–0442, Dayton, OHGoogle Scholar
  19. 19.
    Walle G, Karpen W, Netzelmann U, Rösner H, Meyendorf N (1999) Nondestructive Testing with Thermographic Techniques. Technisches Messen ATM, TM 66 9:312–321Google Scholar
  20. 20.
    Busse G, Wu D, Karpen W (1992) Thermal wave imaging with phase sensitive modulated thermography. J Appl Phys 71:3962–3965ADSCrossRefGoogle Scholar
  21. 21.
    Burgschweiger J (1993) Simulation von Temperaturfeldern bei der zerstörungsfreien Werkstoffprüfung mittels der Impuls-Video- Thermographie. Master Thesis, University MagdeburgGoogle Scholar
  22. 22.
    Moore PO, McIntire P (1995) Nondestructive Testing Handbook, ed. 2, vol. 9, Special Nondestructive Testing Methods, ASNTGoogle Scholar
  23. 23.
    Mende D, Simon G (1971) Physik Gleichungen und Tabellen. Fachbuchverlag, LeipzigGoogle Scholar
  24. 24.
    Harig H (1975) Zur Bedeutung der Thermometrie bei der Prüfung metallischer Werkstoffe. Habilitation thesis, Technical University BerlinGoogle Scholar
  25. 25.
    Liaw PK, Wang H, Jiang L, Yang B, Huang JY, Kuo RC, Huang JG (2000) Thermographic, detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz. Scripta Mater 42:389–395CrossRefGoogle Scholar
  26. 26.
    Rösner H, Meyendorf N, Karpen W, Matikas TE (1999) Nondestructive Evaluation of Fatigue in Titanium Alloys with Thermography, Development of Enabling Methodologies for Detection and Characterization of Early Stages of Damage in Aerospace Materials. Third Annual Report by the University of Dayton, DARPA NDE-MURI, AFOSR Grant No F49620–96–1–0442Google Scholar
  27. 27.
    Holman JP (1997) Heat Transfer. McGraw-Hill, New YorkGoogle Scholar
  28. 28.
    Carslaw HS, Jäger JC (1959) Conduction of heat in solids. Clarendon Press, OxfordGoogle Scholar
  29. 29.
    Schatt W, Worch H (1996) Werkstoffwissenschaft. Deutscher Verlag für Grundstoffindustrie, StuttgartGoogle Scholar
  30. 30.
    Biallas G, Piotrowski A, Eifler D (1995) Cyclic stress-strain, stress-temperature and stress-electrical resistance response of NiCuMo alloyed sintered steel. Fatigue Fract Eng Mat Struct 18 No 5:605–615CrossRefGoogle Scholar
  31. 31.
    Biallas G (1996) Cyclic deformation behavior and microstructure of sintered iron and selected sintered steels. Ph.D. thesis, University GH EssenGoogle Scholar
  32. 32.
    Matikas T (1998) LCF/HCF Interaction Studies Using a HCF Cell Operating in the 10–40 kHz Frequency Range, Development of Enabling Methodologies for Detection and Characterization of Early Stages of Damage in Aerospace Materials. Second Annual Report for DARPA-MURI under Air Force Office of Scientific Research, Grant Number F49620–96–1–0442Google Scholar
  33. 33.
    Meyendorf N, Rösner H, Kramb V, Sathish S (2001) Thermo-Acoustic Fatigue Characterization. To be published in J. Ultrasonics (2002)Google Scholar
  34. 34.
    Rantala J, Wu D, Salerno A, Busse G (1997) Lockin-thermography with mechanical loss angle heating at ultrasonic frequencies. In: Busse G, Balageas D, Carlomagno GM (eds) Quantitative infrared thermography QIRT 96, Edizione ETS, Pisa, pp. 389–393Google Scholar
  35. 35.
    Favro LD, Han X, Li L, Ouyang Z, Sun G, Thomas RL, Richars A (2000) Thermosonic imaging for NDE. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation 20A. AIP Conference Proceedings 557, Melville New York, pp. 478–482Google Scholar
  36. 36.
    Luong MP (1998) Nondestructive evaluation of fatigue limit of metals using infrared thermography. In: Achenbach J et al. (eds) Nondestructive characterization of materials in aging systems. MRS Symposium Proceedings, vol 503, Pittsburgh, pp. 275–280Google Scholar
  37. 37.
    Wong AK, Kirby GC (1990) A hybrid numerical/experimental technique for determining the heat dissipated during low cycle fatigue. Engn Frac Mech 37 Nr. 3:493–504CrossRefGoogle Scholar
  38. 38.
    Canterell JH, Yost WT (1994) Phil Mag 69:315CrossRefGoogle Scholar
  39. 39.
    Kaufmann HR, Lemz D, Luecke K (1975) Internal Friction and Ultrasonic Attenuation in Crystalline Solids, vol. II Springer, Berlin, p. 177Google Scholar
  40. 40.
    Akune K, Mondino M, Vittoz B (1975) Internal Friction and Ultrasonic Attenuation in Crystalline Solids vol. II, Springer, Berlin, p. 211Google Scholar
  41. 41.
    Maurer J (2002) Characterization of Accumulated Fatigue Damage in Ti-6A1–4V Plate Material Using Transmission Electron Microscopy and Nonlinear Acoustics. Ph.D. Thesis, University of DaytonGoogle Scholar
  42. 42.
    Meyendorf N, Roesner H, Frouin J, Maurer J, Sathish S (2003) Acousto-Thermal Microstructure Characterization. To be published in Rev of Progress in QNDE 2003Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • H. Rösner
  • U. Netzelmann
  • J. Hoffmann
  • W. Karpen
  • V. Kramb
  • N. Meyendorf

There are no affiliations available

Personalised recommendations