Skip to main content

Thermographic Materials Characterization

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 67))

Abstract

Thermal techniques are attractive for materials characterization. They provide sophisticated contrast mechanisms and fast, non-contact investigation of large inspection areas. Recent progress in the development of infrared cameras is the key for a wide variety of new applications. In particular, active thermal techniques provide useful information about thermal properties and related quantities as well as geometrical and structural information. “Active” thermography means that, for the purpose of testing, heat is deposited at the surface of the test object or generated within the test object. The surface temperature is monitored as a function of time during or after stimulation. Thermal quantities are determined from the infrared frame sequence. With “Passive” thermography, the temperature of an object is imaged without additional thermal stimulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almond DP, Patel PM (1996) Photothermal Science and Techniques, Chapman & Hall, London

    Google Scholar 

  2. Bennett CA, Patty RR (1982) Appl Opt 21:49–54

    Article  ADS  Google Scholar 

  3. Balageas DL, Krapez JC, Cielo P (1986) Pulsed photothermal modeling of layered materials. J Appl Phys 59:348

    Article  ADS  Google Scholar 

  4. Harwood N, Cummings WM (1991) Thermoelastic Stress Analysis. Adam Hilger, Bristol, pp. 35–43

    Google Scholar 

  5. Monchalin JP, Bussière JF (1984) Measurement of near-surface ultrasonics by thermoemissivity. Nondestructive methods for material property determination. Plenum Press, New York

    Google Scholar 

  6. Enke NF (1989) Thermographic stress analysis of isotropic materials. Ph.D. thesis, University of Wisconsin — Madison

    Google Scholar 

  7. Thomson W (Lord Kelvin) (1857) On the thermo-elastic and thermomagnetic properties of matter. Quart. J of Pure & Appl Math 1:57–77

    Google Scholar 

  8. Vollertsen F, Vogler S (1989) Werkstoffeigenschaften und Mikrostruktur. Carl Hanser, München Wien

    Google Scholar 

  9. Bratina WJ (1966) Internal friction and basic fatigue mechanisms in body-centered cubic metals, mainly iron and carbon steels. Physical acoustics: principles and methods IIIA. Academic Press, New York

    Google Scholar 

  10. Nowick AS, Berry BS (1972) Anelastic relaxation in crystalline solids. Academic Press, New York

    Google Scholar 

  11. Puskar A., Golovin SA (1985) Fatigue in materials: cumulative damage processes. Elsevier, New York

    Google Scholar 

  12. Harig H, Middeldorf K, Müller K (1986) Overview on thermometric investigations of fatigue behavior in steels (in German). HTM 41 5:286–296

    Google Scholar 

  13. Bratina WJ (1966) Internal Friction and Basic Fatigue Mechanisms in Body-Centered Cubic Metals, Mainly Iron and Carbon Steels. In: Warren PM (ed) Physical Acoustics: Principles and Methods. volume III, Part A: The Effect of Imperfections, Academic Press, New York, pp. 223–285

    Google Scholar 

  14. Meyendorf N, Ehrlich S, Nitzsche R (1992) Thermografische Ueberwachung von Schweissprozessen. Bild und Ton 45 3/4:55

    Google Scholar 

  15. Lipetzky LG, Novak MR, Perez I, Davis WR (2001) Development of Innovative Nondestructive Evaluation Technologies for the Inspection of Cracking & Corrosion Under Coatings. Technical Report NSWCCD-61-TR-2001/21, Naval Surface Warfare Center

    Google Scholar 

  16. Meyendorf N, Netzelmann U, Vetterlein T, Walle G (1998) Non-Contact Characterization of Layers by Thermographic Methods on Examples of Testing Problems from Aircraft and Aerospace Technology. Proceedings of Materials Week, Symposium 2b. München

    Google Scholar 

  17. Walle G, Karpen W, Netzelmann U, Rösner H, Meyendorf N (1999) Nondestructive Testing with Thermographic Techniques. Technisches Messen, vol. 66, 9:312–321

    Google Scholar 

  18. Hoffmann JP, Matikas TE, Sathish S, Khobaib M, Meyendorf N, Netzelmann U (1999) Nondestructive Characterization of Organic Corrosion Protective Coatings on Aluminum Alloy Substrates. 3rd Annual Report for DARPA-MURI, Grant Number F49620–96–1–0442, Dayton, OH

    Google Scholar 

  19. Walle G, Karpen W, Netzelmann U, Rösner H, Meyendorf N (1999) Nondestructive Testing with Thermographic Techniques. Technisches Messen ATM, TM 66 9:312–321

    Google Scholar 

  20. Busse G, Wu D, Karpen W (1992) Thermal wave imaging with phase sensitive modulated thermography. J Appl Phys 71:3962–3965

    Article  ADS  Google Scholar 

  21. Burgschweiger J (1993) Simulation von Temperaturfeldern bei der zerstörungsfreien Werkstoffprüfung mittels der Impuls-Video- Thermographie. Master Thesis, University Magdeburg

    Google Scholar 

  22. Moore PO, McIntire P (1995) Nondestructive Testing Handbook, ed. 2, vol. 9, Special Nondestructive Testing Methods, ASNT

    Google Scholar 

  23. Mende D, Simon G (1971) Physik Gleichungen und Tabellen. Fachbuchverlag, Leipzig

    Google Scholar 

  24. Harig H (1975) Zur Bedeutung der Thermometrie bei der Prüfung metallischer Werkstoffe. Habilitation thesis, Technical University Berlin

    Google Scholar 

  25. Liaw PK, Wang H, Jiang L, Yang B, Huang JY, Kuo RC, Huang JG (2000) Thermographic, detection of fatigue damage of pressure vessel steels at 1,000 Hz and 20 Hz. Scripta Mater 42:389–395

    Article  Google Scholar 

  26. Rösner H, Meyendorf N, Karpen W, Matikas TE (1999) Nondestructive Evaluation of Fatigue in Titanium Alloys with Thermography, Development of Enabling Methodologies for Detection and Characterization of Early Stages of Damage in Aerospace Materials. Third Annual Report by the University of Dayton, DARPA NDE-MURI, AFOSR Grant No F49620–96–1–0442

    Google Scholar 

  27. Holman JP (1997) Heat Transfer. McGraw-Hill, New York

    Google Scholar 

  28. Carslaw HS, Jäger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford

    Google Scholar 

  29. Schatt W, Worch H (1996) Werkstoffwissenschaft. Deutscher Verlag für Grundstoffindustrie, Stuttgart

    Google Scholar 

  30. Biallas G, Piotrowski A, Eifler D (1995) Cyclic stress-strain, stress-temperature and stress-electrical resistance response of NiCuMo alloyed sintered steel. Fatigue Fract Eng Mat Struct 18 No 5:605–615

    Article  Google Scholar 

  31. Biallas G (1996) Cyclic deformation behavior and microstructure of sintered iron and selected sintered steels. Ph.D. thesis, University GH Essen

    Google Scholar 

  32. Matikas T (1998) LCF/HCF Interaction Studies Using a HCF Cell Operating in the 10–40 kHz Frequency Range, Development of Enabling Methodologies for Detection and Characterization of Early Stages of Damage in Aerospace Materials. Second Annual Report for DARPA-MURI under Air Force Office of Scientific Research, Grant Number F49620–96–1–0442

    Google Scholar 

  33. Meyendorf N, Rösner H, Kramb V, Sathish S (2001) Thermo-Acoustic Fatigue Characterization. To be published in J. Ultrasonics (2002)

    Google Scholar 

  34. Rantala J, Wu D, Salerno A, Busse G (1997) Lockin-thermography with mechanical loss angle heating at ultrasonic frequencies. In: Busse G, Balageas D, Carlomagno GM (eds) Quantitative infrared thermography QIRT 96, Edizione ETS, Pisa, pp. 389–393

    Google Scholar 

  35. Favro LD, Han X, Li L, Ouyang Z, Sun G, Thomas RL, Richars A (2000) Thermosonic imaging for NDE. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation 20A. AIP Conference Proceedings 557, Melville New York, pp. 478–482

    Google Scholar 

  36. Luong MP (1998) Nondestructive evaluation of fatigue limit of metals using infrared thermography. In: Achenbach J et al. (eds) Nondestructive characterization of materials in aging systems. MRS Symposium Proceedings, vol 503, Pittsburgh, pp. 275–280

    Google Scholar 

  37. Wong AK, Kirby GC (1990) A hybrid numerical/experimental technique for determining the heat dissipated during low cycle fatigue. Engn Frac Mech 37 Nr. 3:493–504

    Article  Google Scholar 

  38. Canterell JH, Yost WT (1994) Phil Mag 69:315

    Article  Google Scholar 

  39. Kaufmann HR, Lemz D, Luecke K (1975) Internal Friction and Ultrasonic Attenuation in Crystalline Solids, vol. II Springer, Berlin, p. 177

    Google Scholar 

  40. Akune K, Mondino M, Vittoz B (1975) Internal Friction and Ultrasonic Attenuation in Crystalline Solids vol. II, Springer, Berlin, p. 211

    Google Scholar 

  41. Maurer J (2002) Characterization of Accumulated Fatigue Damage in Ti-6A1–4V Plate Material Using Transmission Electron Microscopy and Nonlinear Acoustics. Ph.D. Thesis, University of Dayton

    Google Scholar 

  42. Meyendorf N, Roesner H, Frouin J, Maurer J, Sathish S (2003) Acousto-Thermal Microstructure Characterization. To be published in Rev of Progress in QNDE 2003

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rösner, H., Netzelmann, U., Hoffmann, J., Karpen, W., Kramb, V., Meyendorf, N. (2004). Thermographic Materials Characterization. In: Meyendorf, N.G.H., Nagy, P.B., Rokhlin, S.I. (eds) Nondestructive Materials Characterization. Springer Series in Materials Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08988-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08988-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07350-2

  • Online ISBN: 978-3-662-08988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics