Optical Detection of Surface Damage

  • E. B. Shell
  • M. Khobaib
  • J. Hoying
  • L. Simon
  • C. Kacmar
  • V. Kramb
  • M. Donley
  • D. Eylon
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 67)


In many applications, the onset of damage occurs at the component surface due to plastic deformation, fretting, wear, corrosion, or crack nucleation. One result of these processes is a change in the surface topography. Therefore, the first step in nondestructive evaluation of a component is a thorough evaluation of the surface conditions. Inspection techniques that characterize the damage extent on the surface often present the results as a fraction of the component surface area. For damage originating from environmental or mechanical conditions, the severity of the defect or damage can also be described quantitatively by the three-dimensional surface topography. When using many common inspection methods, information regarding the depth of penetration into the surface layers, or protrusion above the surface is difficult to obtain. In addition, when the defects are of submicron or nanometer scale, high resolution three-dimensional inspection techniques are required.


Fatigue Crack Power Spectral Density Surface Damage Optical Detection Slip Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WYKO (1996) Surface profilers technical reference manual. WYKO Corporation, Tuscon AZGoogle Scholar
  2. 2.
    Veeco Instruments, 10/2/2002,
  3. 3.
    Caber P (1997) Interferometer characterizes laser-textured steel. Laser Focus World: 157–158Google Scholar
  4. 4.
    Bowe B, Toal V (1998) White light interferometric surface profiler. Opt Engn 37(6): 1796–1799ADSCrossRefGoogle Scholar
  5. 5.
    Raz E (1996) A multiple white light interferometer. Rev Sci Instrum. 67(10):3416–3419ADSCrossRefGoogle Scholar
  6. 6.
    Wallace WW, Hoeppner DW (1985) AGARD Corrosion Handbook. Vol. 1, Aircraft Corrosion: Causes and Case Histories. AGARDograph No.278, NATO p. 101Google Scholar
  7. 7.
    Collins JA (1981) Failure of Materials. In: John Wiley & Sons Mechanical Design, New YorkGoogle Scholar
  8. 8.
    Antoniou RA, Radtke TC (1997) Mat Sci Eng A237:229–240CrossRefGoogle Scholar
  9. 9.
    Hutson AL, Nicholas T (1999) Int J of Fatigue 21:663–669CrossRefGoogle Scholar
  10. 10.
    Hutson A (1999) unpublished research conducted at Wright-Patterson Air Force BaseGoogle Scholar
  11. 11.
    Chen GS, Wan KC, Gao M, Wei RP, Flournoy TH (1996) Transition for Pitting to Fatigue Crack Growth-Modeling of Corrosion Fatigue Crack Nucleation in a 2024-T3 Aluminum Alloy. Materials Science and Engineering A219:126CrossRefGoogle Scholar
  12. 12.
    Piascik RS, Willard SA (1994) The Growth of Small Corrosion Fatigue Cracks in Alloy 2024. Fatigue and Fracture of Engineering Materials and Structures 17(11):1247–1248Google Scholar
  13. 13.
    Ahn SH, Lawrence FV, Metzger NM (1992) Fatigue Fracture. Eng Mater Struct 15:625CrossRefGoogle Scholar
  14. 14.
    Simon LB (1999) Influence of Pitting Corrosion on the Loss of Structural Integrity in Aluminum Alloy 2024-T3. Master’s Thesis, University of Dayton, Dayton, OHGoogle Scholar
  15. 15.
    Wilson L (1995) Quantitative Analysis: Gravimetric, Volumetric and Instrumental Analysis. 3rd edn. Mohican Textbook Publishing Co. Loudonville, Ohio, pp. 50–58Google Scholar
  16. 16.
    Newman JC, Raju JIS (1983) Stress-Intensity Factor Equations for Cracks in Three-Dimensional Finite Bodies. Fracture Mechanics: Fourteenth Symposium-Volume 1: Theory and Analysis. ASM STP 791 pp. I-238–I-265Google Scholar
  17. 17.
    Shankaran K (1998) Validation of Accelerated Corrosion Tests for Aging Aircraft Life Prediction: Effects of Pitting Corrosion on the Mechanical Behavior of 7075-T6 Aluminum Alloy. Final Report, F33615–96-D-5835, Delivery Order: 0026–02, AFRL, Wright-Patterson AFB, OHGoogle Scholar
  18. 18.
    Bray GH, Bucci RJ, Colvin EL, Kulak M (1997) Effect of Prior Corrosion on the S/N Fatigue Performance of Aluminum Alloys 2024-T3 and 2524-T3, Effects of the Environment on the Initiation of Crack Growth. ASTM STP 1298, p. 8Google Scholar
  19. 19.
    Shimojo M, Chujo M, Higo Y, Shigetomo (1998) Int J Fatigue 20(5):365–371CrossRefGoogle Scholar
  20. 20.
    Harmain GA, Provan JW (1997) Theoretical and Applied Fracture Mechanics 26:63–79CrossRefGoogle Scholar
  21. 21.
    Sanford RJ, Daily JW (1979) Eng Fract Mech 11:621–633CrossRefGoogle Scholar
  22. 22.
    Smith CW, Post D, Hiatt G, Nicoletto G (1983) Experimental Mechanics 23(1):15–20CrossRefGoogle Scholar
  23. 23.
    Kang BSJ, Zhuang YN, Liu YK (1992) Experimental Mechanics:309–315Google Scholar
  24. 24.
    Krishnamoorthy H, Tippur HV (1999) Experimental Techniques:22–25Google Scholar
  25. 25.
    Dadkhah MS, Kobayashi AS, Wang FX, Grasser DL (1998) Proc. VI Int. Cong Exp Mech, pp. 227Google Scholar
  26. 26.
    Bastawros AF, Kim KS (2000) Journal of the Mechanics and Physics of Solids 48:67–98ADSMATHCrossRefGoogle Scholar
  27. 27.
    Dudderar TD, Gorman HJ (1973) Experimental Mechanics 13 (4):145–149CrossRefGoogle Scholar
  28. 28.
    Krishnaswamy S, Hareesh V, Tippur HV, Roaskis AJ (1992) J Mech Phys Solids 40(2):339–372ADSCrossRefGoogle Scholar
  29. 29.
    Ramaswamy S, Tippur HV, Xu L (1993) Experimental Mechanics:218–227Google Scholar
  30. 30.
    Sanford RJ (1993) Experimental Mechanics:241–247Google Scholar
  31. 31.
    Schroeder J, Shell EB, Matikas T, Eylon D (1999) Development of methods to observe fatigue damage through surface characteristics. SPIE Conference on Nondestructive Evaluation of Aging Materials and Composites, volume 3585, Paper No. 15Google Scholar
  32. 32.
    Eylon D, Bania PJ (1978) Metallurgical Transactions A9:1273–1279ADSCrossRefGoogle Scholar
  33. 33.
    Hertzberg RW (1983) Deformation and Fracture Mechanics of Engineering Materials. In: John Wiley & Sons, New York, pp. 279–280Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. B. Shell
  • M. Khobaib
  • J. Hoying
  • L. Simon
  • C. Kacmar
  • V. Kramb
  • M. Donley
  • D. Eylon

There are no affiliations available

Personalised recommendations