Skip to main content

Positron Annihilation Spectroscopy (PAS)

  • Chapter
Nondestructive Materials Characterization

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 67))

Abstract

Positron annihilation spectroscopy (PAS) was established in the early 70’s as a laboratory method with high sensitivity to measure and distinguish between thermally generated single and divacancies in pure metals. From there, PAS has been developed to investigate many kinds of open volume defects in metals, semiconductors, ceramics, and polymers. Recently it has been demonstrated that PAS is able to analyze layered structures up to approximately 2 µm nondestructively, and even determine chemical properties of the outmost surfacelayer, undetectable by any other spectroscopic method. Unlike many other methods of material analysis, internal stresses or textures do not effect positron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dupasquier A, Mills AP Jr. (eds) (1995) Positron Spectroscopy of Solids. Proc. of the Int. School of Physics “Enrico Fermi”, Course CXXV, Varenna 6–16 July 1993, Amsterdam: IOS Press

    Google Scholar 

  2. van Veen A, Corbel C, Mijnarends PE (eds) (1995) Europhysics Industrial Workshop EIW-12, Industrial Applications of Positron Annihilation. Oisterwijk, The Netherlands 10–12 March 1994, J de Physique IV, vol 5, Colloque C 1, Supplementa No 1

    Google Scholar 

  3. Mogensen O E (1995) Positron Annihilation in Chemistry. Springer-Verlag: Berlin, Heidelberg

    Book  Google Scholar 

  4. Krause-Rehberg R, Leipner HS (1999) Positron Annihilation in Semiconductors. Springer Verlag: Heidelberg

    Book  Google Scholar 

  5. Ito Y, Suzuki T, Kobayashi Y (eds) (2000) Proc of the 6th Int. Workshop on Positron and Positronium Chemisty (PPC-6), Radiat Phys and Chem 58:401–795

    Google Scholar 

  6. Triftshäuser W, Kögel G, Sperr P, (eds.) (2001) Proc 12th Int Conf on Positron Annihilation, Mat Sci Forum 363–365:1

    Google Scholar 

  7. Brauer G, Awand W (2002) SLOPOS-9, Proc. of the 9th Int. Workshop on Slow-Positron Baam Techniques for Solids and Surfaces, Dresden, Appl. Surface Science 194:1

    Google Scholar 

  8. Somieski B, Sourkov A, Maurer JL, Meyendorf N (2002) Positron Annihilation Spectroscopy and Transmission Electron Microscopy for Characterization of Lattice Defects in Fatigued Metals. In: Meyendorf N (ed) Final Report: Development of Enabling Methodologies for Detection and Characterization of Early Stages of Damage in Aerospace Materials.AFOSR Grant No F49620–96–1–0442 pp. 286–298

    Google Scholar 

  9. Somieski B, Krause-Rehberg R, Salz H, Meyendorf N (1995) In: J de Physique IV, vol 5, Colloque C 1, Supplementa No 1:C1–127

    Google Scholar 

  10. Allen AJ, Coleman CF, Conchie SJ, Smith FA, Holbrook J, Bussiére J (eds) In: Nondestructive Monitoring of Materials Properties, Symposium Procceedings, vol 142, Materials Research Society, p. 131

    Google Scholar 

  11. Rytsölä K, Nissilä J, Kokkonen J. Laasko A, Aavikko R, Saarinen K (2002) Appl Surface Science 194:260

    Article  ADS  Google Scholar 

  12. Dlubek G, Brümmer O, Meyendorf N (1979) Vacancy Impurity Binding Enthalpy in NiSb by Means of Positron Annihilation. phys stat sol (a) 53:K157–160

    Article  Google Scholar 

  13. Akers DW, Denison AB, Harmon F (2002) Appl Surface Science 194:245

    Article  ADS  Google Scholar 

  14. Kirkegaard P, Pedersen NJ, Eldrup M (1989) Report RISØ-M-2740, Riso Mational Laboratory, Roskilde, Denmark

    Google Scholar 

  15. LIFSPECFIT 5.1, Lifetime spectrum fit version 5.1, Technical University of Helsinki, Laboratory of Physics, 1992

    Google Scholar 

  16. Kansy J (1996) Nucl Instr and Meth A:374, 235

    Article  ADS  Google Scholar 

  17. Gregory RB, Y. Zhu Y (1990) Nucl Instr and Meth A 290:172

    Article  ADS  Google Scholar 

  18. Shukla A, Peter M, Hoffmann L (1993) Nucl Instr and Meth A 335:310

    Article  ADS  Google Scholar 

  19. Schultz PJ, Lynn KG (1988) Rev Mod Phys 60:701

    Article  ADS  Google Scholar 

  20. Vehanen A (1989) In: Dorikens-Vanpraet L, Dorikens M, Segers D (eds.) Positron Annihilation. Proc. 8th Int. Conf., Gent, Belgium, World Scientific, Singapore, p. 39

    Google Scholar 

  21. Sperr P, Kögel G (1987) Mater Sci Forum 255–257, 109

    Google Scholar 

  22. Greif H, Haaks M, Holzwarth U, Männig U, Tongbhoyai M, Wider R, Maier K, Bihr J, Huber B (1997) Appl Phys Lett 71:2125

    Article  ADS  Google Scholar 

  23. Kögel Gl (2002) Appl Surface Science 194:200.

    Article  ADS  Google Scholar 

  24. Hautojärvi P Corbel C (1995) Positron Spectroscopy of Defects in Metals and Semiconductors. In: Dupasquier A, Mills AP Jr. (eds.) Positron Spectroscopy of Solids. Proc. of the Int. School of Physics “Enrico Fermi”, Course CXXV, Varenna 6–16 July 1993, Amsterdam: IOS Press, pp. 491

    Google Scholar 

  25. Dlubek G (1987) Positron Studies of Decomposition Phenomena in Al Alloys. In: Proc. 4th Int. Conf. on Age-harenable Aluminium Alloys, Balatonfüre, Hungary, 26–30 May, 1986, Mat. Sci. Forum 13/14, p. 15

    Google Scholar 

  26. Dupasquier A, Folegati P, de Diego N, Somoza A (1998) J Phys: Condens. Matter 10: 10409

    Article  ADS  Google Scholar 

  27. Staab TEM, Krause-Rehberg R, Kieback B (1999) J Mat Sci 34:3822

    Article  Google Scholar 

  28. Eylon D (1998) Summary of the Available Information on the Processing of the Ti-6A1–4V HCF/LCF Program Plates. Report prepared for the PRDA V Meeting, San Antonio, TX

    Google Scholar 

  29. Eylon D, Bartel TL, Rosenblum ME (1980) High Temperature Low Cycle Fatigue in Beta Processed Ti-5A1–5Sn-2Zr-2Mo-0.25Si. Metallurgical Transactions A 11A: 361–1367

    Google Scholar 

  30. Eylon D, Bania PJ (1978) Fatigue Cracking Characteristics of Beta-Annealed Large colony Ti-11 Alloy. Metallurgical Transactions A, 9A:1273–1279

    Article  ADS  Google Scholar 

  31. Depetasse S, Meyendorf N, Dlubek G, Krause-Rehberg R, Sourkov A (1999) Positron Annihilation as a New Method to Characterize Different Heat Treated Aluminum Alloys such as the Deformation and Fatigue States of Austinetic Steels (German) Proceedings of DACH Annual Conference 1999, Celle

    Google Scholar 

  32. Maurer JL (2002) Characterization of Accumulated Fatigue Damage in Ti-6A1–4V Plate Material Using Transmission Electron Microscopy and Nonlinear Acoustics. Ph.D. theses, University of Dayton

    Google Scholar 

  33. Somiesky B (1997) Positron Annihilation as Method for Nondestructive Testing. Ph.D. Theses, Universitaet des Saarlandes

    Google Scholar 

  34. Depetasse S (1999) Studium der Entmischungvorgänge in ausgewählten Aluminiumlegierungen mit der Positronenannihilationsmethode. Master Thesis, IZFP Saarbruecken

    Google Scholar 

  35. Staab TEM, Zschech E, Krause-Rehberg R, Positron lifetime measurements for characterization of nano-structural changes in the age hardenable AlCuMg 2024 alloy, Journal of materials science 35(2000):4667–4672.

    Article  ADS  Google Scholar 

  36. Dlubek G, Depetasse S, Sourkov A, Meyendorf N (1999) Positron Annihilation Studies of Precipitation in Aluminum Alloyes. 20th Riso Interantional Symposium on Materials Science, Roskilde, Denmark, pp. 313–319

    Google Scholar 

  37. Dlubek G, Lademann P, Krause H, Krause S, Unger R (1998) Positron lifetime studies of decomposition in 2024 and 7010 alloys. Scripta Mater 39: 893–899.

    Article  Google Scholar 

  38. Prez J (1998) Physics and Mechanics of Amorphous Polymers. Balkema AA, Rotterdamm, Brookfield

    Google Scholar 

  39. Jean YC (1990) Microchem J 42:72

    Article  MathSciNet  Google Scholar 

  40. Jean YC (1995) Positron Annihilation, Proc. 10th Int Conf He YJ, Cao BS, Jean YC (eds) Mat Sci Forum 175–178, Trans Tech Publ:59.

    Google Scholar 

  41. Pethrick R A (1997) Progr Polym Sci 22: 1.

    Article  Google Scholar 

  42. Tao SJ (1972) J Chem Phys 56:5499

    Article  ADS  Google Scholar 

  43. Eldrup M, Lightbody D, Sherwood JN (1981) Chem Phys 63:51

    Article  Google Scholar 

  44. Nakanishi H; Jean YC (1988) In: Schrader DM, Jean YC (eds.) Positron and Positronium Chemistry, studies in physical and theoretical chemistry. 57, Elsevier Sci. Publ. Amsterdam, p. 159

    Google Scholar 

  45. Ellis B (1993) Chemistry and Technology of Epoxy Resins, Chapmann & Hall,

    Book  Google Scholar 

  46. Dlubek G private communication.

    Google Scholar 

  47. Deng Q, Zandiehnadem F, Jean YC (1992) Macromolecules 25:1090

    Article  ADS  Google Scholar 

  48. Ueoda E, Uedono A, Ajjihira Y, Yamashita S, Naito T, Horie K (1992) In: Positron Annihilation, Proc. 9th. Int. Conf., Kajcsos Zs, Szeles C (eds.) Mat Sci Forum:105–110;1745

    Google Scholar 

  49. Suzuki T, Oki Y, Numajiri M, Mira T, Kondo K, Ito Y. Polymer 1993;34;1361

    Article  Google Scholar 

  50. Lupinski JH, Moore RS (1988) Polymeric Materials for Electronics Packaging and Interconnection, ACS Symmposium Series 407, California

    Google Scholar 

  51. Dale JM, Hulett LD, Rosseel TM (1987) J Appl Polym Sci 33:3055

    Article  Google Scholar 

  52. Nishijima S, Honda Y, Tagawa S, Okada T (1996) J Radioanal & Nucl Chem 211; No. 1:93

    Article  Google Scholar 

  53. Ghosh K; Mittal KL (1996) Polyimides, Fundamentals and Application. Marcel Dekker, Inc.: New York

    Google Scholar 

  54. Dlubek G, Buchhold R, Hübner CH, Nakladal A (1999) Macromolecules 32:2348

    Article  ADS  Google Scholar 

  55. Clough RL, Billigham NC, Gillen KT (eds) (1996) Polymer Durability: Degradation, Stabilization and Lifetime Predictions. Adv Chem Ser 349, Am Chem Soc, Washington, DC

    Google Scholar 

  56. Hulett LD Jr., Wallace S, Xu J, Nielsen B, Scales CS, Lynn KG, Pfau J, Schaub A (1995) Appl Surfa Sci 85:234

    Google Scholar 

  57. Cao H, Zhang R, Sundar CS, Yuan JP, He Y, Sandreczki TC, Jean YC (1998) Macromolecules 31:6627

    Article  ADS  Google Scholar 

  58. Cao H, Yuan JP, Zhang R, Huang CM, He Y, Sandreczki TC, Jean YC, Nielsen B, Suzuki R, Ohdaira T (1999) Macromolecules 32:5925

    Article  ADS  Google Scholar 

  59. Cao H, He Y, Zhang R, Yuan JP, Sandreczki TC, Jean YC, Nielsen B (1999) J Polym Sci Part B: Polym Phys 37:1289

    Article  ADS  Google Scholar 

  60. Mallon PE, Li Y, Zhang R, Chen H, Wu Y, Sanreczki TC, Jean YC, Suzuki R, Ohdaira T (2002) Appl Surf Sc 194:176

    Article  ADS  Google Scholar 

  61. Zhang R, Cao H, Chen HM, Mallon P, Sandreczki TC, Richardson JR, Jean YC, Nielsen B, Suzuki R, Ohadaira T (2000) Radiat Phys Chem 58:639

    Article  ADS  Google Scholar 

  62. Zhang R, Mallon PE, Chen H, Huang CM, Zhang J, Li Y, Wu Y, Sandrczki TC, Jean YC (2001) Prog Org Coat 42:244

    Article  Google Scholar 

  63. Chen H, Peng Q, Huang YY, Zhang R, Mallon PE, Zhang J, Li Y, Wu Y, Richardson JR, Sandreczki TC, Jean YC, Suzuki R, Ohdaira T (2002) Appl Surf Sc 194:168

    Article  ADS  Google Scholar 

  64. Dlubek G, Börner F, Buchhold R, Sahre K, Krause-Rehberg R, Eichhorn KJ (2000) J Polym Sci Part B: Polym Phys 38:3062

    Article  ADS  Google Scholar 

  65. Jiráskovà Y, Brauer G, Schneeweiss O, Blawert C, Anward W, Coleman PG (2002) Appl Surf Sc 194:145

    Article  ADS  Google Scholar 

  66. Escoba Galindo R, van Veen A, Alba Garcia A, Schut H, DE Hosson JM (2001) In: Triftshäuser W, Kögel G, Sperr P (eds) (2001) Proc 12th Int Conf on Positron Annihilation, Mat Sci Forum 363–365:1, p. 499

    Google Scholar 

  67. Dull TL, Frieze WE, Gidley DW, Scherer GB, Ellerbrock DJ, Macdonald DD (1997) Mater Sci Forum 255–257:671

    Google Scholar 

  68. van Hoecke T, Segers D, Schut H, Dauwe C, van Veen A, van Waeyenberge B, Palffy L (1997) Mater Sci Forum 255–257:724

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dlubek, G., Meyendorf, N. (2004). Positron Annihilation Spectroscopy (PAS). In: Meyendorf, N.G.H., Nagy, P.B., Rokhlin, S.I. (eds) Nondestructive Materials Characterization. Springer Series in Materials Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08988-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08988-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07350-2

  • Online ISBN: 978-3-662-08988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics