Skip to main content

Scanning Probe Microscopy: Ultrasonic Force and Scanning Kelvin Probe Force Microscopy

  • Chapter
Nondestructive Materials Characterization

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 67))

Abstract

In 1981, Gerd Binning and Heinrich Rohree at IBM Zurich developed the first generation of the scanning probe microscope, the scanning tunneling microscope for which they received the Noble Prize in physics. The Scanning Tunneling Microscope (STM) was a fantastic breakthrough with its capability to image atoms with angstrom precision. The physical operating principle of the STM is that when a bias voltage is applied between a sharp tip and a sample, a tunneling current is produced as electrons travel from one material to the other. This tunneling current is an exponential function of the distance between the tip and the sample and is responsible for the angstrom precision of the STM [1]. Wide use of the STM however was constrained by the requirement that the scanning tip and the sample must be conductive. The Atomic Force Microscope (AFM) was developed from the STM system and overcame the necessity of conductivity that accompanied STM imaging. The AFM sacrifices some of the atomic resolution of the STM as a trade off for imaging both nonconductors and conductors. The AFM resolution is classified as near atomic for topographic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park Scientific Instruments (1997) A Practical Guide to Scanning Probe Microscopy

    Google Scholar 

  2. Digital Instruments (1996) DimensionTM 3000 Scanning Probe Microscope Instruction Manual

    Google Scholar 

  3. Bhushan et al. (1995) Handbook of Micro/ Nano Tribology: CRC Series Mechanics and Material Science, CRC Press, New York

    Google Scholar 

  4. Binning G C.F. Quate CF, Gerber Ch (1986) Phys Rev Lett 56:930

    Article  ADS  Google Scholar 

  5. Sarid D (1991) Scanning Force Microscopy. Oxford University Press, New York

    Google Scholar 

  6. Wiesendanger R (1994) Scanning Probe Microscopy and Spectroscopy. Cambridge Press, Cambridge

    Book  Google Scholar 

  7. Burnham NA, Colton RJ, Pollock HM (1993) Nanotechnology 4:64

    Article  ADS  Google Scholar 

  8. Burnham NA, Kulik AJ (1997) Surface Forces and Adhesion. In: Bushan B (ed) Handbook of Micro/Nanotribology, CRC Press, Boca Raton

    Google Scholar 

  9. Meyer G, Amer NM (1990) Simultaneous of lateral and normal forces with an opticalbeam-deflection atomic force microscope. Appl Phys Lett 57 (20):2089–2091

    Article  ADS  Google Scholar 

  10. Cohen S, Bray M, Lightbody M (eds) (1994) Atomic Force Microscopy / Scanning Tunneling Microscopy. Plenum Press, New York, pp. 217–299

    Google Scholar 

  11. Maivald P, Butt HJ, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Nanotechnology 2:103

    Article  ADS  Google Scholar 

  12. Kolosov O, Yamanaka K (1993) Jpn J Appl Phys 32:L1095

    Article  ADS  Google Scholar 

  13. Rabe U, Arnold W (1994) Appl Phys Lett 64:1493

    Article  ADS  Google Scholar 

  14. Kulik A, Wuthrich C, Gremaud G (1995) Acoustical Imaging vol. 21, pp. 581

    Article  Google Scholar 

  15. Oulevey F, Gremaud G, Semoroz A, Kulik AJ, Burnham NA, Dupas E, Gourdon D (1998) Rev Sci Instru 69:2085

    Article  ADS  Google Scholar 

  16. Radmacher M, Tillman R, Gaub HE (1993) Biophysical Society 65:735

    Article  Google Scholar 

  17. Zhong Q, Inniss D, Kjoller K, Ellings VB (1996) Surf Sci 290:L688

    Article  Google Scholar 

  18. Hansma PK (1994) Appl Phys Lett 64:2454

    Article  ADS  Google Scholar 

  19. Magonov SN, Elings V, Whangbo MH (1997) Surf Sci Lett 375:L385

    Article  ADS  Google Scholar 

  20. Magonov SN, Reneker D (1997) Ann Revs Mater Sci 27:175

    Article  ADS  Google Scholar 

  21. Rosa A, Weilandt E, Hild S, Marti O (1997) Meas. Sci Technol 8:1333

    Article  ADS  Google Scholar 

  22. Miyatani T, Okamoto S, Rosa A, Marti O, Fujihara M (1997) Appl Phys Lett 71:2632

    Article  ADS  Google Scholar 

  23. Krotil HU, Stifter T, Waschipky H, Weishaupt K, Hil S, Marti O (1999) Surf Interface Anal 27:336

    Article  Google Scholar 

  24. Okabe Y, Furugori M, Tani Y, Akiba U, Fujihara M (2000) Ultramicroscopy 82:203

    Article  Google Scholar 

  25. Burnham NA, Gremaud G, Kulik AJ, Gallo PJ, Oulevey F (1996) J Vac Sci Technol B 14:794

    Article  Google Scholar 

  26. Hoummady M, Farnault E (1998) Enhanced sensitivity to force gradients by using higher flexural modes of the atomic force microscope cantilever. Appl Phys A66:361–64

    Article  Google Scholar 

  27. Volodin A, Van Haesendonck C (1998) Low temperature force microscopy based on piezoresistive cantilevers operating at a higher flexural mode. Appl Phys A66:305–308

    Article  Google Scholar 

  28. Burnham N, Kulik AJ, Oulevey F, Mayencourt C, Gourdon D, Dupas E, Gremaud G (1997) A Beginner’s Guide to LPM Materials Properties Measurements. In: B. Bhushan, Kluwer (eds) Micro/Nanotribology and its Applications. Academic Publishers, pp. 421–438

    Chapter  Google Scholar 

  29. Burnham NA, Gremaud G, Kulik AJ, Gallo PJ, Oulevey F (1996) Scanning localacceleration microscopy. J Vac Sci Technol B14 (2) :1308–1312

    Article  Google Scholar 

  30. Takagi T (1986) Ionized Cluster Beam Deposition and Epitaxy. Noyan Publishers, NY

    Google Scholar 

  31. Sathish S, Fossheim K, Bye T (1988) Imaging of Grain-Structure of Copper by Scanning Acoustic Microscopy. J Mater Sci Lett 7:735

    Article  Google Scholar 

  32. Schumaker E (2000) Ultrasonic Force Microscopy for Materials Characterization. Masters Thesis, University of Dayton

    Google Scholar 

  33. Schumaker E, Shen L, Ruddell MJ, Sathish S, Murray PT (2000) Ultrasonic force microscopic characterization of nanosized copper particles. Nanophase and Nanocomposite Materials III. Symposium Materials Research Society Proceedings vol. 581, pp. 473–477

    Article  Google Scholar 

  34. Truell R, Elbaum C, Chick B (1969) Ultrasonic Methods in Solid State Physics. Academic Press, New York, Appendix D, pp. 370

    Google Scholar 

  35. Yamanaka K, Noguchi A, Tsuji T, Koike T, Goto T (1999) Surf Interface Anal 27:600

    Article  Google Scholar 

  36. Rabe U, Turner K, Arnold W (1988) Appl Phys A66:277

    Google Scholar 

  37. Turner JA, Hirsekorn S, Rabe U, Arnold W (1997) J. Appl. Phys., 82, 966

    Article  ADS  Google Scholar 

  38. Druffner CJ, Sathish S (2002) Improving Atomic Force Microscopy Images with the Adaptation of Ultrasonic Force Microscopy. SPIE’s 7th Annual International Symposium on Nondestructive Evaluation and Reliability of Micro- and Nanomaterial Systems, San Diego, SPIE Proceedings, vol. 4703, pp. 105–113

    Article  ADS  Google Scholar 

  39. To be published by C. Druffner, et al, Atomic Force and Ultrasonic Force Microscopic Investigation of Laser Treated Ceramic Head Sliders. accepted 11/2002 by Journal of the American Ceramic Society

    Google Scholar 

  40. Druffner CJ, Masters Thesis (2002) A Material Characterization Technique For Detection Of Microcracks And Grain Structures In Miniaturized Microelectric Devices. University of Dayton

    Google Scholar 

  41. Tam AC (2001) Laser processes for precise microfabrication of magnetic disk drive components. Riken Review, vol. 32, pp. 71–76

    Google Scholar 

  42. Chen G, Xu X, Poon C, Tam A (1998) Laser Assisted microscale deformation of stainless steel and ceramics. Optical Engineering, vol. 37, No. 10, pp. 2837–2842

    Article  ADS  Google Scholar 

  43. Gatzen H (2000) Rigid disk slider micromachining challenges to meet microtribology needs. Tribology International, vol. 33, pp. 337–342

    Article  Google Scholar 

  44. Singer P (2000) Copper CMP: A question of tradeoffs. Semiconductor International, vol. 23 No. 5, pp. 73–84

    Google Scholar 

  45. Druffner C, et al. to be published

    Google Scholar 

  46. Szklarska-Smialowska Z (1986) Pitting Corrosion of Metals, NACE, Houston

    Google Scholar 

  47. Buchheit RG, Grant RP, Hlava PF, McKenzie B, Zender GL (1997) J. Electrochem. Soc., 144, 2621

    Article  Google Scholar 

  48. Guillaumin V, Mankowski G (1999) Corr Sci 41:421–438

    Article  Google Scholar 

  49. Buchheit RG (1995) J Electrochem Soc 142, 3994

    Article  Google Scholar 

  50. Guillaumin V, Schmutz P, Frankel GS (2001) J. Electrochem Soc 148:B163

    Article  Google Scholar 

  51. Leblanc P, Frankel GS (2001) J Electrochem Soc, accepted for publication

    Google Scholar 

  52. Schmutz P, Frankel GS (1998) J Electrochem Soc 145:2285–2294

    Article  Google Scholar 

  53. Schmutz P, Frankel GS (1998) J Electrochem Soc 145:2298–2306

    Google Scholar 

  54. Schmutz P, Frankel GS (1999) J Electrochem Soc 146:4461

    Article  Google Scholar 

  55. Burstein GT, Davies DH (1980) Corr Sci 20

    Google Scholar 

  56. Burstein GT, Newman RC (1980) Electrochim Acta 25:1009

    Article  Google Scholar 

  57. Burstein GT, Marshall PI (1983) Corr Sci 23:125

    Article  Google Scholar 

  58. Itagaki M, Oltra R, Vuillemin B, Keddam M, Takenouti H (1997) J Electrochem Soc 144:64

    Article  Google Scholar 

  59. Oltra R, Indrianjafy GM (1992) J Electrochem Soc 139: 78

    Article  Google Scholar 

  60. Oltra R, Indrianjafy GM, Keddam M, Takenouti H (1993) Corr Sci 35:827–832

    Article  Google Scholar 

  61. Burstein GT, Davenport AJ (1989) J Electrochem Soc 136:936

    Article  Google Scholar 

  62. Burstein GT, Cinderey RJ (1991) Corr Sci 32:1195–1211

    Article  Google Scholar 

  63. Frankel GS, Rush BM, Jahnes CV, Farrell CE, Davenport AJ, Isaacs HS (1991) J Electrochem Soc 138: 643

    Article  Google Scholar 

  64. Frankel GS, Scully JR, Jahnes CV (1996) J Electrochem Soc 143:1834

    Article  Google Scholar 

  65. Bockris JOM, Reddy AKN (1970) Modern Electrochemistry. Plenum Press, New York

    Book  Google Scholar 

  66. Yee S, Stratmann M, Oriani RA (1991) J Electrochem Soc 138:55

    Article  Google Scholar 

  67. Stratmann M, Streckel H (1990) Corros Sci 30:681

    Article  Google Scholar 

  68. Devecchio D, Schmutz P, Frankel GS, (2000) Electrochem. Solid-State Lett 3:90

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Druffner, C., Schumaker, E., Sathish, S., Frankel, G.S., Leblanc, P. (2004). Scanning Probe Microscopy: Ultrasonic Force and Scanning Kelvin Probe Force Microscopy. In: Meyendorf, N.G.H., Nagy, P.B., Rokhlin, S.I. (eds) Nondestructive Materials Characterization. Springer Series in Materials Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08988-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08988-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07350-2

  • Online ISBN: 978-3-662-08988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics