Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 67))

Abstract

Maintenance and reliability of aircraft is a major safety concern and economical factor. Many civilian and military aircraft have been in service for 35 years or more. Aircrafts that were originally designed for a service life of 20 years are currently considered for life extensions of up to 80 years. The cost of corrosion and fatigue related maintenance on these aging structures has increased dramatically. A study conducted in 1998 showed that the direct costs of corrosion maintenance to the United States Air Force were $775 million/year [1] . These costs continue to rise in spite of Air Force structure changes resulting in a 20% reduction in the overall fleet. In an effort to reduce these maintenance costs, several programs have been initiated for the development of methods to manage and control corrosion and fatigue damage in aging aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinzie R, Cook G (1998) Cost of Corrosion Maintenance. 2nd joint NASA/FAA/DoD Conference on Aging Aircraft

    Google Scholar 

  2. Shell EB (2002) Prediction of Residual Fatigue Life from NDE of Corroded Components. PhD. Dissertation, University of Dayton

    Google Scholar 

  3. Kinzie R (1994) Proceedings of Tri-Service Corrosion Conference. USA, pp. 3–25

    Google Scholar 

  4. Khobaib M (1997) Corrosion Prevention Technology for Advanced Aircraft Coating Systems. Final report for US Air Force, contract-number F 33615–94-C-58–04

    Google Scholar 

  5. Jeffcoate CS, Voevodin NN, Khobaib M, Reynolds LB, Kuhn WK, Donley MS (1998) Future trends on non-chromate corrosion inhibitors. 43rd International SAMPE Symposium and Exhibition (Proceedings) 43, pp. 2113–2122

    Google Scholar 

  6. Cole GK, Clark G, Sharp PK (1997) The implications of Corrosion with Respect to Aircraft Structural Integrity. Aeronautical and Maritime Research Laboratory, Melbourne, Australia, Research Report DSTO-PR-0102, AR-010–199

    Google Scholar 

  7. Chen GS, Gao M, Wei RP (1996) Microconstituent-Induced Pitting Corrosion in Aluminum Alloy 2024-T3. Corrosion Science, vol. 52, No. 1:8

    Article  Google Scholar 

  8. Rokhlin SI, Kim JY, Nagy PB, Zoofan B (1999) Effect of pitting corrosion on fatigue crack initiation and fatigue life. Engineering Fracture Mechanics 62:425–444

    Article  Google Scholar 

  9. Connolly BJ, Scully JR (2000) Corrosion cracking susceptibility in Al-Li-Cu alloys 2090 and 2096 as a function of isothermal aging time. Scripta Mater 42:1039–1045

    Article  Google Scholar 

  10. Goswami, Tarun K, Hoeppner DW (1995) Pitting Corrosion Fatigue of Structural Materials. Structural Integrity in Aging Aircraft, ASME, AD-vol. 47:129–130

    Google Scholar 

  11. Frankel GS (1998) Pitting Corrosion of Metals. Journal of the Electrochemical Society, vol. 145:2188–2190

    Google Scholar 

  12. Marcus P, Oudar J (eds.) (1995) Corrosion Mechanisms. In: Marcel Dekker Inc. Theory and Practice, New York, pp. 201–237

    Google Scholar 

  13. Chen GS, Wan KC, Gao M, Wei RP, Flournoy TH (1996) Transition for Pitting to Fatigue Crack Growth-Modeling of Corrosion Fatigue Crack Nucleation in a 2024-T3 Aluminum Alloy. Materials Science and Engineering A 219:126

    Article  Google Scholar 

  14. Piascik RS, Willard SA (1994) The Growth of Small Corrosion Fatigue Cracks in Alloy 2024. Fatigue and Fracture of Engineering Materials and Structures, vol. 17, No. 11:1247–1248

    Google Scholar 

  15. Ahn SH, Lawrence Jr. FV, Metzger NM (1992) Fatigue Fracture Eng Mater Struct 15:625

    Article  Google Scholar 

  16. Barter S, Sharp PK, Clark G (1994) The Failure of an F/A-18 Trailing Edge Flap Hinge. Engineering Failure Analysis, vol. 1, No. 4: 255

    Article  Google Scholar 

  17. Wallace WW, Hoeppner DW (1985) AGARD Corrosion Handbook, vol. 1, Aircraft Corrosion: Causes and Case Histories. AGARDograph No. 278, NATO, p. 101

    Google Scholar 

  18. Callister WD Jr. (1994) Materials Science and Engineering: An Introduction, 4th ed. Wiley, New York

    Google Scholar 

  19. Cooper DC, Kelto CA (1978) Fatigue in machines and structures—Aircraft. Fatigue and microstructure: Materials science seminar, Proc ASM pp. 29–56

    Google Scholar 

  20. Suresh S (1991) Fatigue of Materials. Cambridge University Press, Cambridge, p. 10

    Google Scholar 

  21. Finney JM (1994) Fatigue crack growth in metallic military aircraft structures. Handbook of fatigue crack propagation in metallic structures, Elsevier Science B.V., Amsterdam

    Google Scholar 

  22. Gregory JK (1994) Fatigue Crack Propagation in Titanium Alloys. Handbook of fatigue crack propagation in metallic structures I-II, Elsevier Science B.V., Amsterdam

    Google Scholar 

  23. Hagemaier DJ (1991) Application of crack detection to aircraft structures. Fatigue crack measurement: Techniques and applications. Engineering Materials Advisory Services, London

    Google Scholar 

  24. Blumenauer H, Push G (1993) Technische Bruchmechanik. Deutscher Verlag für Grundstoffindustrie, Leipzig /Stuttgart

    Google Scholar 

  25. Lütjering G, Gysler A (1985) Fatigue in titanium: Science and technology, Titanium science and technology: Proc 5th Int Con on Titanium, Deutsche Gesellschaft für Metallkunde DGM, Oberursel

    Google Scholar 

  26. Lang M (2001) Ph.D. thesis, University of Saarbrücken, performed at IZFP-FhG

    Google Scholar 

  27. Moorthy V, Choudhary BK, Vaidyanathan S, Jayakumar T, Bhanu Sankara Rao K, Raj B (1999) An assessment of low cycle fatigue damage using magnetic Barkhausen emission in 9Cr- 1 Mo ferritic steel. International Journal of Fatigue 21:263–269

    Article  Google Scholar 

  28. Dobmann G (1995) Early fatigue damage from the NDE point of view. Review of Progress in Quantitative Nondestructive Evaluation 14:2003–2010

    Article  Google Scholar 

  29. Schatt W, Worch H (1996) Werkstoffwissenschaft. Deutscher Verlag für Grundstoffindustrie, Stuttgart, p. 378

    Google Scholar 

  30. Schatt W, Worch H (1996) Werkstoffwissenschaft. Deutscher Verlag für Grundstoffindustrie, Stuttgart, pp. 394–397

    Google Scholar 

  31. Zenner WH (1973) Schadensakkumulationshypothesen zur Lebensdauervorhersage bei schwingender Beanspruchung. Teil 1 — Ein kritischer Überblick. Zeitschrift für Werkstofftechnik / Journal of Materials Technology 4(1):25

    Article  Google Scholar 

  32. Puskar A, Golovin SA (1985) Fatigue in materials: cumulative damage processes. Elsevier, New York, pp. 274–281

    Google Scholar 

  33. Xiaoli T, Haicheng G (1996) Fatigue crack initiation in high-purity titanium crystals. Int J Fatigue 18:329–333

    Article  Google Scholar 

  34. Maurer JL, Frouin J, Sathish S, Matikas TE, Eylon D (1999) Internal damage characterization of cyclically loaded Ti-6A1–4V, using TEM and non linear acoustics. Proc 9th Titanium World Conference, St. Petersburg

    Google Scholar 

  35. Karjalainen LP, Moilanen M, Myllylä R, Palomäki K (1980) Monotonic and cyclic deformation in mild steel detected by positron annihilation. Phys stat sol (a) 62:597–601

    Article  ADS  Google Scholar 

  36. Uchida M, Yoshida K, Nakagawa YG, Allen AJ, Whapham AD (1992) Application of positron annihilation to fatigue and plastic damage detection in SA508 and type 304 steels. Nondestr Test Eval 7:83–91

    Article  Google Scholar 

  37. Carreon H, Nagy PB, Blodgett MP (2002) Research in Nondestructive Evaluation 14:59–80

    ADS  Google Scholar 

  38. Petiot C, Foulquier J, Journet B, Vincent L (1994) In: Waterhouse RB, Lindley TC (eds.) Fretting Fatigue. ESIS 18 Mech Eng Pub London, pp. 497–512

    Google Scholar 

  39. Vinssbo O, Soderberg S (1988) On Fretting Maps. Wear 126:131–147

    Article  Google Scholar 

  40. Zhou ZR, Sauger E,. Liu JJ, Vincent L (1997) Nucleation and early growth of tribologically transformed structure (TTS) induced by fretting. Wear 212:50–58

    Article  Google Scholar 

  41. Antoniou RA, Radtke TC (1997) Mechanisms of fretting-fatigue of titanium alloys. Mat Sci Eng A237:229–240

    Article  Google Scholar 

  42. Fouvry S, Kapsa Ph, Vincent L (1995) Analysis of sliding behavior for fretting loadings: determination of transition criteria. Wear 185:35–46

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyendorf, N. et al. (2004). Degradation of Aircraft Structures. In: Meyendorf, N.G.H., Nagy, P.B., Rokhlin, S.I. (eds) Nondestructive Materials Characterization. Springer Series in Materials Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08988-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08988-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07350-2

  • Online ISBN: 978-3-662-08988-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics