Skip to main content

Part of the book series: Springer Laboratory ((SPLABORATORY))

Abstract

In NMR measurements, the nuclei that become excited by the irradiating RF field give up their surplus energy to their surroundings over a period of time to return to the equilibrium state. This process is called NMR relaxation, and involves longitudinal relaxation and transverse relaxation. The time constants of these relaxation processes, known as the spin-lattice relaxation time (T 1) and the spin-spin relaxation time (T 2), are important NMR parameters besides chemical shifts and spin-coupling constants. In this chapter the basic principles of NMR relaxation and its practical application to polymers are described. A detailed description of NMR relaxation and its application for general purposes are found in Refs. [1–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farrar TC, Becker ED (1971) Pulse and Fourier transform NMR: introduction to theory and methods. Academic, New York, p 46

    Google Scholar 

  2. Levy GC (1974) Topics in carbon-13 NMR spectroscopy, vol. 1. Wiley, New York, chap 3

    Google Scholar 

  3. Yoder CH, Schaeffer CP Jr (1987) Introduction to multinuclear NMR. Benjamin/ Cummings, Malno Park, CA, p 67

    Google Scholar 

  4. Derome AE (1987) Modern NMR techniques for chemistry research. Pergamon, New York, chaps 4, 5

    Google Scholar 

  5. Slichter CP (1980) Principles of magnetic resonance. Springer, Berlin Heidelberg, New York

    Google Scholar 

  6. Abragam A (1983) Principles of nuclear magnetism. Oxford University Press, Oxford

    Google Scholar 

  7. Abraham RJ, Loftus P (1978) Proton and carbon-13 NMR spectroscopy. Heyden, Philadelphia, chap 6

    Google Scholar 

  8. Vold RL, Waugh JS, Klein MP, Phelps DE (1968) J Chem Phys 48: 3831

    Article  CAS  Google Scholar 

  9. Lyerla JR, Grant DM (1972) Int Rev Sci Phys Chem Ser 1 4: 155

    Google Scholar 

  10. Lyerla JR, Levy GC (1974) Top Carbon-13 NMR Spectrosc 1: 79

    CAS  Google Scholar 

  11. Breitmaier E, Spohn KH, Berger S (1975) Angew Chem 87: 152

    Article  CAS  Google Scholar 

  12. Wehrli FW (1976) Top Carbon-13 NMR Spectrosc 2: 343

    CAS  Google Scholar 

  13. Berger S (1978) Angew Phys Org Chem 16: 239

    Article  CAS  Google Scholar 

  14. Boer RT, Kidd RG (1982) Annu Rep NMR Spectrosc 13: 319

    Article  Google Scholar 

  15. Craik DJ, Levy GC (1984) Top Carbon-13 NMR Spectrosc 4: 239

    CAS  Google Scholar 

  16. Schaefer J, Natusch DFS (1972) Macromolecules 5: 416

    Article  CAS  Google Scholar 

  17. Allerhand A, Doddrell D, Komoroski R (1971) J Chem Phys 55: 189

    Article  CAS  Google Scholar 

  18. Doddrell D, Glushko V, Allerhand A (1972) J Chem Phys 56: 3683

    Article  CAS  Google Scholar 

  19. Hatada K, Kitayama T, Okamoto Y, Ohta K, Umemura Y, Yuki H (1978) Makromol Chem 179: 485

    Article  CAS  Google Scholar 

  20. Chûjô R, Hatada K, Kitamaru R, Kitayama T, Sato H, Tanaka Y, Horii F, Terawaki Y. (1988) Polym J 20: 627

    Article  Google Scholar 

  21. Hatada K, Ishikawa H, Kitayama T,Yuki H (1977) Makromol Chem 178: 2753

    Article  CAS  Google Scholar 

  22. Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, London, chap 8

    Google Scholar 

  23. Levy GC, Cargioli JP, Amet FAL (1973) J Am Chem Soc 95: 1527

    Article  CAS  Google Scholar 

  24. Levy GC, Wang D (1986) Macromolecules 19: 1013

    Article  CAS  Google Scholar 

  25. Horii F, Nakagawa M, Kitamaru R, Chûjô R, Hatada K, Tanaka Y (1992) Polym J 24: 1155

    Article  CAS  Google Scholar 

  26. Heatley F, Wood B (1978) Polymer 19: 1405

    Article  CAS  Google Scholar 

  27. Gronski W, Murayama N (1978) Makromol Chem 179: 1509

    Article  CAS  Google Scholar 

  28. Inoue Y, Konno T (1976) Polym J 8: 457

    Article  CAS  Google Scholar 

  29. Hatada K, Kitayama T, Terawaki Y, Ohta K, Okamoto Ÿ,Yuki H, Lenz RW (1988) Bull Inst Chem Res Kyoto Univ 66: 311

    Google Scholar 

  30. Schaefer J, Natusch DFS (1972) Macromolecules 5: 416

    Article  CAS  Google Scholar 

  31. Inoue Y, Nishioka A, Chûjô R (1973) J Polym Sci Polym Phys Ed 11: 2237

    CAS  Google Scholar 

  32. Hatada K, Okamoto Y, Ohta K,Yuki H (1976) J Polym Sci Polym Lett Ed 14: 51

    Article  CAS  Google Scholar 

  33. Ute K, Nishimura T, Hatada K (1989) Polym J 21: 1027

    Article  CAS  Google Scholar 

  34. Lyerla JR Jr, Horikawa TT (1976) J Polym Sci Polym Lett Ed 14: 641

    Article  CAS  Google Scholar 

  35. Hatada K, Kitayama T, Saunders K, Lenz RW (1981) Makromol Chem 182: 1449

    Article  CAS  Google Scholar 

  36. Lyerla JR Jr, Horikawa TT, Johnson DE (1977) J Am Chem Soc 99: 2463

    Article  CAS  Google Scholar 

  37. Inoue Y, Konno T, Chûjô R, Nishioka A (1977) Makromol Chem 178: 2131

    Article  CAS  Google Scholar 

  38. Inoue Y, Konno T (1978) Makromol Chem 179: 1311

    Article  CAS  Google Scholar 

  39. Spevâcek J, Schneider B (1978) Polymer 19: 63

    Article  Google Scholar 

  40. Heatley F, Cox MK (1980) Polymer 21: 381

    Article  CAS  Google Scholar 

  41. Heatley F, Cox MK (1981) Polymer 22: 190

    Article  CAS  Google Scholar 

  42. Heatley F, Cox MK (1981) Polymer 22: 288

    Article  CAS  Google Scholar 

  43. Zajicek J, Pivcova H, Schneider B (1981) Makromol Chem 182: 3169

    Article  CAS  Google Scholar 

  44. Zajicek J, Pivcova H, Schneider B (1981) Makromol Chem 182: 3177

    Article  CAS  Google Scholar 

  45. Asakura T, Suzuki K, Horie K, Mita S (1981) Makromol Chem 182: 2289

    Article  CAS  Google Scholar 

  46. Oh SH, Roo R, Jhon MS (1989) J Polym Sci Polym Chem Ed 27: 1383

    Article  CAS  Google Scholar 

  47. Asakura T, Dot Y (1983) Macromolecules 16: 786

    Article  CAS  Google Scholar 

  48. Hatada K, Kitayama T, Matsuo N, Yuki H (1983) Polym J 15: 719

    Article  CAS  Google Scholar 

  49. Schaefer J (1972) Macromolecules 5: 427

    Article  CAS  Google Scholar 

  50. Komoroski RA, Makfield J, Mandelkern L (1977) Macromolecules 10: 545

    Article  CAS  Google Scholar 

  51. Gronski W, Murayama N (1976) Makromol Chem 177: 3017

    Article  CAS  Google Scholar 

  52. Hatada K, Kitayama T, Terawaki Y, Tanaka Y, Sato H (1980) Polym Bull 2: 791

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hatada, K., Kitayama, T. (2004). NMR Relaxation. In: NMR Spectroscopy of Polymers. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08982-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08982-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07293-2

  • Online ISBN: 978-3-662-08982-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics