Skip to main content

Die wissenschaftliche Grundlage der nichtoperativen funktionellen Knochenbruchbehandlung

  • Chapter
  • 19 Accesses

Zusammenfassung

Frühzeitige Funktion, Gewichtsbelastung und Bewegung der Gelenke einer Extremität während der Frakturbehandlung waren Neuerungen, die für viele traditionelle Auffassungen der konservativen und operativen Behandlungsmethoden eine Herausforderung darstellten. Daher wurde es wichtig für uns, auf die entstandenen Differenzen hinsichtlich der Wichtigkeit dieser älteren Prinzipien der Frakturbehandlung und auf ihre Beziehung zur Frakturschienung einzugehen. In dem Bestreben, ein besseres Verständnis davon zu erlangen, weshalb Techniken der Frakturschienung klinisch so erfolgreich sind, wurde eine Serie von Untersuchungen in unseren Forschungslabors durchgeführt (Sarmiento, Latta). Eine Zusammenfassung der wichtigen Aspekte dieser Forschung folgt weiter unten.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Akeson WH et al (1976) Effects of internal fixation plates on long bone remodeling. Acta Orthop Scand 47: 241

    Article  PubMed  CAS  Google Scholar 

  • Anderson LD (1965) Compression plate fixation and the effect of different types of internal fixation on fracture healing. J Bone Joint Surg 47-A: 191

    Google Scholar 

  • Bagby GW, Janes AM (1958) The effect of compression on the rate of fracture healing using a special plate. Am J Surg 95: 761

    Article  PubMed  CAS  Google Scholar 

  • Bassett CAL (1962) Current concepts of bone formation. J Bone Joint Surg 44-A: 1217

    Google Scholar 

  • Bassett CAL, Becker RO (1962) Generation of electric potentials by bone in response to mechanical stress. Science 137: 1063

    Article  PubMed  CAS  Google Scholar 

  • Becker RO, Murray BG (1970) The electrical control system regulating fracture healing in amphibians. Clin Orthop 73: 169

    PubMed  CAS  Google Scholar 

  • Brighton CT, Krobs AG (1972) Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg 54-A: 323

    Google Scholar 

  • Charnley J (1968) The closed treatment of common fractures, 3rd ed. Williams and Wolkins, Baltimore

    Google Scholar 

  • Currey JO (1973) Effects of stress concentration in bone. Abstract of paper presented at 5th Annual Biomaterials Symp, Clemson, South Carolina

    Google Scholar 

  • Danckwardt-Lilliestrom G (1969) Reaming of the medullary cavity and its effect on diaphyseal bone. Acta Orthop Scand [Suppl] 128: 1

    CAS  Google Scholar 

  • Danckwardt-Lilliestrom G et al (1970) Intracortical circulation after intramedullary reaming with reduced pressure in the medullary cavity. J Bone Joint Surg 52-A: 1390

    Google Scholar 

  • Eggers GWN et al (1950) Clinical significance of the contact-compression factor in bone surgery. AMA Arch Surg 62: 467

    Article  Google Scholar 

  • Erickson E (1974) Streaming potentials and other water dependent effects in mineralized tissue. Ann NY Acad Sci 238: 321

    Article  Google Scholar 

  • Friedenberg AB, French G (1952) Effects of known compression forces on fracture healing. Surg Gynecol Obstet 94: 743

    PubMed  CAS  Google Scholar 

  • Friedenberg FB, Brighton CT (1966) Bioelectrical potentials in bone. J Bone Joint Surg 48-A: 915

    Google Scholar 

  • Gillespie J (1954) The nature of bone changes associated with nerve injuries and disuse. J Bone Joint Surg 36-B: 464

    Google Scholar 

  • Gothman L (1960) Arterial changes in experimental fractures of the rabbit’s tibia treated with intramedullary nailing. Acta Orthop Scand 120: 289

    CAS  Google Scholar 

  • Gothman L (1961) Arterial changes in experimental fractures of the monkey’s tibia treated with intramedullary nailing. Acta Chir Scand 121: 56

    PubMed  CAS  Google Scholar 

  • Gothman L (1962) Local arterial changes caused by surgical exposure and application of encircling wires (cerclage) on the rabbit tibia. Acta Chri Scand 123: 9

    CAS  Google Scholar 

  • Gothman L (1962) Local arterial changes associated with experimental fractures of the rabbit’s tibia treated with encircling wires (cerclage). Acta Chir Scand 123: 17

    PubMed  CAS  Google Scholar 

  • Gothman L (1962) Local arterial changes associated with diastasis in experimental fractures of the rabbit’s tibia treated with intramedullary nailing. Acta Chir Scand 123: 104

    PubMed  CAS  Google Scholar 

  • Greenwald RA (1978) Proteocyclan and lysozyme content of healing fracture callus. Proc of 24th ORS. Dallas, Texas, p 33

    Google Scholar 

  • Holden CEA (1972) The role of blood supply to soft tissues in the healing of diaphyseal fractures. J Bone Joint Surg 54-A: 993

    Google Scholar 

  • Hults A, Olerud S (1965) The healing of fractures in denervated limbs. J Trauma 5: 571

    Article  Google Scholar 

  • Kellerova E, et al (1970) Changes in the muscle and skin blood flow following lower leg fracture in man. Acta Orthop Scand 41: 240

    Google Scholar 

  • Ketenjian AY, Charalampos A (1975) Morphological and biochemical studies during differentiation and calcification of fracture callus cartilage. Clin Orthop 107: 266

    Article  PubMed  CAS  Google Scholar 

  • Ketenjian AY, Jafri AM, Arsenis C (1978) The function of differentiating cells in the control of calcification in fracture callus. The role of extracellular vesicles and collagen. Proc of the 24th ORS. Dallas, Texas, p 35

    Google Scholar 

  • Kruse RL, Kelly PJ (1974) Acceleration of fracture healing distal to a venous tourniquet. J Bone Joint Surg 56-A: 730

    Google Scholar 

  • Latta L, Sarmiento A (1977) Biomechanical analysis of the stability of tibial fractures. Orthop Trans 1: 229

    Google Scholar 

  • Latta L, Sarmiento A (1980) Mechanical behavior of tibial fractures and periosteal fracture callus mechanics. In: Moore T (ed) AAOS Symposium on Trauma to the Leg and Its Sequella. Mosby, St Louis

    Google Scholar 

  • Latta L, Sarmiento A, Katz J (1978) The structure and function of the interosseous membrane. Proc of 24th ORS. Dallas, Texas

    Google Scholar 

  • Latta L, Sarmiento A, Tarr RR (1980) The rationale of functional bracing of fractures. Research experiences. Clin Orthop 146: 28

    Google Scholar 

  • Laurnen EL, Kelly PJ (1969) Blood flow oxygen consumption, carbon dioxide production in blood calcium and pH changes in tibial fractures in dogs. J Bone Joint Surg 51-A: 298

    Google Scholar 

  • Lindholm RB et al (1970) Effect of forced interfragmental movements on healing of tibial fractures in rats. Acta Orthop Scand 40: 721

    Google Scholar 

  • Lippert FG, Hirsch C (1974) The three-dimensional measurement of tibial fracture motion by photogrammetry. Clin Orthop 105: 130

    PubMed  Google Scholar 

  • Lockwood R, Latta L (1980) Bone blood flow changes with diaphyseal fractures. J Bone Joint Surg Orthop Trans (in press)

    Google Scholar 

  • Macnab I (1974) The role of periosteal blood supply in the healing of fractures of the tibia. Clin Orthop 105: 27

    PubMed  Google Scholar 

  • Matthews LS, Hirsch C (1972) Temperatures measured in human cortical bones when drilling. J Bone Joint Surg 54-A: 297

    Google Scholar 

  • Milner JC, Rhinelander FW (1968) Compression fixation in primary bone healing. Surg Forum 19: 453

    PubMed  CAS  Google Scholar 

  • Minns RJ, Hunter JAA (1976) The mechanical and structur al characteristics of the tibiofibular interosseous membrane. Acta Orthop Scand 47: 236

    Article  PubMed  CAS  Google Scholar 

  • Nilsson DER, Smith RE (1969) The influence of breaking force of osteoporosis following fracture of the tibial shaft in rats. Acta Orthop Scand 40: 72

    Article  PubMed  CAS  Google Scholar 

  • Nylander G, Semb H (1972) Veins of the lower part of the leg after tibial fractures. Surg Gynecol Obstet 134: 974

    PubMed  CAS  Google Scholar 

  • Olerud S, Danckwardt-Lilliestrom G (1968) Fracture healing in compression osteosynthesis in the dog. AAOS Instructional Course Lectures. J Bone Joint Surg 50-B: 844

    Google Scholar 

  • Olerud S, Danckwardt-Lilliestrom G (1971) Fracture healing in compression osteosynthesis. Acta Orthop Scand [Suppl] 137: 1

    CAS  Google Scholar 

  • Paradis GR, Kelly PJ (1975) Blood flow and mineral deposition in canine tibial fractures. J Bone Joint Surg 57-A: 220

    Google Scholar 

  • Pita J, Muller F, Howell DS (1973) Disaggregation of proteoglycan aggregate during endochondral calcification. Physiological role of cartilage lysozyme. In: Burleigh PMC, Poole AR (ed) Dynamics of connective tissue macromolecules. North-Holland, Amsterdam, Chap 12

    Google Scholar 

  • Rhinelander FW (1968) The normal microcirculation of diaphyseal cortex and its response to fracture. AAOS Instructional Course Lectures. J Bone Joint Surg 50-A: 784

    Google Scholar 

  • Rhinelander FW, Baragry R (1962) Microangiography in bone healing. I Undisplaced closed fractures. J Bone Joint Surg 44-A: 1273

    Google Scholar 

  • Rhinelander FW, Baragry R (1968) Microangiography in bone healing. II. Displaced closed fractures. J Bone Joint Surg 50-A: 643

    Google Scholar 

  • Rhinelander FW et al (1967) Microangiography in bone healing, III. Osteotomies with internal fixation. J Bone Joint Surg 49-A: 1006

    Google Scholar 

  • Sarmiento A (1970) A functional below-knee brace for tib- ial fractures. J Bone and Joint Surg 52-A: 2, 295–311

    Google Scholar 

  • Sarmiento A (1972) Functional bracing of tibial and femoral shaft fractures. Clin Orthop and Rel Res 82: 2–13

    CAS  Google Scholar 

  • Sarmiento A, Sinclair WmF (1968) Prosthetic and orthotic principles in orthopaedics. Artificial Limbs 2–2: 28–32

    Google Scholar 

  • Sarmiento A, Latta L (1975) Design of a fracture brace. Proceedings of the 28th Annual Conf on Eng in Med and Biology

    Google Scholar 

  • Sarmiento A, Latta L (1976) Factors controlling the behavior of tibial fractures. A correlation of clinical and laboratory studies. Abstract of kappa delta award paper. J Bone Joint Surg 58-A: 724

    Google Scholar 

  • Sarmiento A, Latta L, Zilioli A, Sinclair WF (1974) The role of soft tissues in stabilization of tibial fractures. Clin Orthop 105: 116

    PubMed  Google Scholar 

  • Sarmiento A, Latta L, Sinclair WmF (1976) Functional bracing of fractures, A.A.O.S. Instructional Course Lectures. The C.V. Mosby Company

    Google Scholar 

  • Sarmiento A, Schaeffer J, Beckerman L, Latta L, Enis J (1977) Fracture healing in rat femora as effected by functional weight-bearing. J Bone Joint Surg 59-A: 369

    Google Scholar 

  • Sarmiento A, Kinman PB, Latta L (1979) Fractures of the proximal tibia and tibial condyles. Clin Orthop Rel Res 145: 136–145

    Google Scholar 

  • Sarmiento A, Mullis DL, Latta LL, Alvarez RR (1980) A quantitative comparative analysis of fracture healing under the influence of compression plating versus closed weight-bearing treatment. Clin Orthop 232: 239

    Google Scholar 

  • Schenck T, Somerset JH, Porter RE (1969) Stresses in orthopaedic walking casts. ASME Publication #69-BHF-14

    Google Scholar 

  • Trueta J (1963) The role of vessels in osteogenesis. J Bone Joint Surg 45-B: 402

    Google Scholar 

  • Trueta J (1974) Blood supply and rate of healing of tibial fractures. Clin Orthop 105: 11

    PubMed  Google Scholar 

  • Trueta J, Caladias AK (1955) Vascular changes caused by the Kuntscher type of nailing. J Bone Joint Surg 37-B: 492

    Google Scholar 

  • Trueta J, Buhr AJ (1963) The vascular contribution to osteogenesis. V. The vasculature supplying the epiphyseal cartilage in rachitic rats. J Bone Joint Surg 45-B: 572

    Google Scholar 

  • Uhthoff HK (1979) Prevention of bone atrophy through an early removal of internal fixation plates. An experimental study in the dog. Howmedica Trauma Workshop, New York

    Google Scholar 

  • Uhthoff HK, Dubuc FL (1971) Bone structure changes in the dog under rigid internal fixation. Clin Orthop 81: 165

    Article  PubMed  CAS  Google Scholar 

  • Whiteside LA (1977) The effects of extraperiosteal and subperiosteal dissection of the rabbit tibia on muscle blood flow. Proceedings of 23rd Annual ORS. Las Vegas, Nevada

    Google Scholar 

  • Whiteside LA, Lesker RA, Sweeney RE (1978) Relationship between biochemical and mechanical characteristics of callus during radiographically determined stages of fracture healing. Proceedings of 24th Annual ORS. Dallas, Texas

    Google Scholar 

  • Woo SLY, et al (1976) A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness. J Bone Joint Surg 58-A: 190

    Google Scholar 

  • Wray JB (1964) Acute changes in femoral arterial blood flow after closed tibial fractures in dogs. J Bone Joint Surg 46-A: 1262

    Google Scholar 

  • Yablon IG, Cruess RL (1968) The effect of hyperbaric oxygen on fracture healing in rats. J Trauma 8: 186

    Article  PubMed  CAS  Google Scholar 

  • Yamagiski M, Uoshimura Y (1955) The biomechanics of fracture healing. J Bone Joint Surg 37-A: 1035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarmiento, A., Latta, L.L. (1984). Die wissenschaftliche Grundlage der nichtoperativen funktionellen Knochenbruchbehandlung. In: Nichtoperative funktionelle Frakturenbehandlung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08977-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08977-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08978-1

  • Online ISBN: 978-3-662-08977-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics