Skip to main content

Developing Transport Theory to Study the Chiral Phase Transition

  • Conference paper
Book cover New Non-Perturbative Methods and Quantization on the Light Cone

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 8))

  • 139 Accesses

Zusammenfassung

One of the fundamental questions that is open to both theory and experiment is how to observe the chiral phase transition. Indications that a phase transition from a chirally symmetric to a chirally broken phase have been obtained a long time ago: lattice gauge simulations of quantum chromodynamics (QCD), which are equilibrium calculations that can include only temperature but not finite density, show a phase transition at a finite critical temperature T c [1]. Unfortunately, due to the difficulties inherent in a confining theory such as QCD, it is impossible to observe this transition directly experimentally, let alone obtain experimental values for the usual quantities that are associated with critical phenomena, such as critical exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example, Laermann E., Nucl. Phys. A610 (1996) 1.

    Article  Google Scholar 

  2. Klevansky S.P., Ogura A., and Hiifner J., Heidelberg Preprint HD-TVP-9702.

    Google Scholar 

  3. Klevansky S.P., Rehberg P., and Hüfner J., in preparation.

    Google Scholar 

  4. Schwinger J., J. Math. Phys. 2 (1961) 407.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Keldysh L.V., JETP 20 (1965) 1018.

    MathSciNet  Google Scholar 

  6. Lifschitz E.M. and Pitajewski L.P., Physikalische Kinetik (Akademie Verlag, Berlin, 1986) p. 423.

    MATH  Google Scholar 

  7. See for example, Mröwczyriski S. and Heinz U., Ann. Phys. (N.Y.) 229 (1994) 1.

    Article  ADS  Google Scholar 

  8. Kadanoff L.P. and Baym G., Quantum Statistical Mechanics (Benjamin / Cummings, Massachusetts, 1962) p. 110.

    MATH  Google Scholar 

  9. Klevansky S.P., Rehberg P., Ogura A., and Hüfner J., QCD Phase Transitions (GSI, Darmstadt, 1997) p. 397.

    Google Scholar 

  10. Rehberg P. and Hüfner J., Heidelberg Preprint HD-TVP-97/03

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klevansky, S.P., Ogura, A., Rehberg, P., Hüfner, J. (1998). Developing Transport Theory to Study the Chiral Phase Transition. In: Grangé, P., Neveu, A., Pauli, H.C., Pinsky, S., Werner, E. (eds) New Non-Perturbative Methods and Quantization on the Light Cone. Centre de Physique des Houches, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08973-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08973-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64520-7

  • Online ISBN: 978-3-662-08973-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics