Skip to main content

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 8))

  • 136 Accesses

Abstract

Measurements of QCD observables have reached such high precision that power corrections to the structure functions can often be extracted with a reasonable accuracy from the existing data. The situation on the theoretical side is much less clear. In the best understood case of deep inelastic scattering, the relevant contributions can be attributed in the framework of operator product expansion (OPE) to matrix elements of higher-twist operators [1], but their determination in QCD is ambiguous due to occurrence of power divergences [2]. From the phenomenological point of view, however, attempts to compute these matrix elements using e.g., QCD sum rules have provided results which seem to have at least the right order of magnitude [3] as compared with available experimental estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shuryak E.V. and Vainshtein A.I., Nucl. Phys. B199 (1982) 451.

    Article  ADS  Google Scholar 

  2. Jaffe R.L. and Soldate M., Phys. Rev. D26 (1982) 49.

    ADS  Google Scholar 

  3. Ellis R.K., Furmanski W. and Petronzio R., Nucl. Phys. B207 (1982) 1.

    Article  ADS  Google Scholar 

  4. Martinelli G. and Sachrajda C.T., Nucl. Phys. B478 (1996) 660.

    Article  ADS  Google Scholar 

  5. Braun, V.M., Kolesnichenko A.V., Nucl. Phys. 283B, (1987) 723.

    Article  ADS  Google Scholar 

  6. Balitsky I.I., Braun, V.M. and Kolesnichenko A.V., Phys. Lett. B242 (1990) 245.

    Google Scholar 

  7. Braun, V.M., Kolesnichenko A.V., (E), Phys. Lett. B318 (1993) 648.

    Google Scholar 

  8. Stein E., Górnicki P., Mankiewicz L., Schäfer A. and Greiner W., Phys. Lett. B343 (1995) 369.

    Google Scholar 

  9. Stein E., Górnicki P., Mankiewicz L. and Schäfer A., Phys. Lett. B353 (1995) 107.

    Google Scholar 

  10. Neubert M., Phys.Rev. D51 (1995) 5924.

    ADS  Google Scholar 

  11. Beneke M. and Braun V.M., Nucl. Phys. B454 (1995) 253.

    Article  ADS  Google Scholar 

  12. Akhoury R. and Zakharov V.I., Phys. Lett. B357 (1995) 646.

    Google Scholar 

  13. Lovett-Turner C.N. and Maxwell C.J., Nucl. Phys. B452 (1995) 188.

    Article  ADS  Google Scholar 

  14. Krasnikov N. V. and Pivovarov A.A., Mod. Phys. Lett. A11 (1996) 835.

    Article  ADS  Google Scholar 

  15. Nason P. and Seymour M.H., Nucl. Phys. B454 (1995) 291.

    Article  ADS  Google Scholar 

  16. Korchemsky P. and Sterman G., Nucl. Phys. B437 (1995) 415.

    Article  ADS  Google Scholar 

  17. Zakharov V. I., Nucl. Phys. B385 (1992) 452.

    Article  ADS  Google Scholar 

  18. Mueller A. H., Phys. Lett. B308 (1993) 355.

    MathSciNet  Google Scholar 

  19. Beneke M., Nucl. Phys. B405 (1993) 424.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Broadhurst D. J., Z. Phys. C58 (1993) 339.

    Google Scholar 

  21. Dokshitser Yu. L., Marchesini G. and Webber B. R., Nucl. Phys. B469 (1996) 93.

    Article  ADS  Google Scholar 

  22. Beneke M., Braun V.M. and Magnea L., hep-ph/9701309 (1997).

    Google Scholar 

  23. The New Muon Collaboration, Nucl. Phys. B371 (1992) 3.

    Article  Google Scholar 

  24. Virchaux M. and Milsztajn A., Phys. Lett. B274 (1992) 221.

    Google Scholar 

  25. Sidorov A.V., Phys. Lett. B389 (1996) 379.

    Google Scholar 

  26. Stein E., Meyer-Hermann M., Mankiewicz L. and Schäfer A., Phys. Lett. B376 (1996) 177.

    Google Scholar 

  27. Meyer-Hermann M., Maul M., Mankiewicz L., Stein E. and Schäfer A., Phys. Lett. B383 (1996) 463.

    Google Scholar 

  28. Beneke M. and Braun V. M., Phys. Lett. B348 (1995) 513.

    Google Scholar 

  29. Ball P., Beneke M. and Braun V.M., Nucl. Phys. B452 (1995) 563.

    Article  ADS  Google Scholar 

  30. Dasgupta M. and Webber B. R., Phys. Lett. B382 (1996) 273.

    Google Scholar 

  31. Maul M., Stein E., Schäfer A. and Mankiewicz L., Phys. Lett. B401 (1997) 100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mankiewicz, L. (1998). Phenomenology of Renormalons in Inclusive Processes. In: Grangé, P., Neveu, A., Pauli, H.C., Pinsky, S., Werner, E. (eds) New Non-Perturbative Methods and Quantization on the Light Cone. Centre de Physique des Houches, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08973-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08973-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64520-7

  • Online ISBN: 978-3-662-08973-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics