Advertisement

Intermediate Volumes and the Role of Instantons

  • Pierre van Baal
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 8)

Abstract

An outstanding problem is to understand the formation of a mass gap and the spectrum of excitations in a non-Abelian gauge theory. Non-perturbative aspects are believed to play a crucial role, but despite much progress a simple explanation is still lacking. Over the years we have been interested in addressing this problem in a finite volume, where its size can be used as a control parameter, which is conspicuously absent in infinite volumes, in particular for formulating the binding of gluons in glueballs. Much progress was made in intermediate volumes with a torodial geometry, where results can be directly compared to lattice Monte Carlo calculations in the same physical volume [1].

Keywords

Gauge Transformation Fundamental Domain Intermediate Volume Boundary Identification Field Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    van Baal P., Phys.Lett. 224B (1989) 397;ADSGoogle Scholar
  2. [1a]
    van Baal P., Nucl. Phys. B351 (1991) 183.ADSCrossRefGoogle Scholar
  3. [2]
    Löscher M., Nucl.Phys. B219 (1983) 233ADSCrossRefGoogle Scholar
  4. [3]
    van Baal P. and Hari Dass N.D., Nucl.Phys. B385 (1992) 185.ADSCrossRefGoogle Scholar
  5. [4]
    Babelon O. and Viallet C., Comm.Math.Phys. 81 (1981) 515.MathSciNetADSMATHCrossRefGoogle Scholar
  6. [5]
    Singer I., Comm.Math.Phys. 60 (1978) 7.MathSciNetADSMATHCrossRefGoogle Scholar
  7. [6]
    Gribov V., Nucl.Phys. B139(1978) 1.MathSciNetADSCrossRefGoogle Scholar
  8. [7]
    Nahm W., in: IV Warsaw Sym.Elem.Part.Phys, 1981, ed. Z.Ajduk, p.275.Google Scholar
  9. [8]
    van Baal P., in: Probabilistic Methods in Quantum Field Theory and Quantum Gravity, Damgaard P.H. et al, ed. (Plenum Press, New York, 1990) p31;Google Scholar
  10. [8]
    van Baal P., Nucl.Phys. B(Proc.Suppl.)20 (1991) 3.MATHCrossRefGoogle Scholar
  11. [9]
    Semenov-Tyan-Shanskii M.A. and Franke V.A., Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V.A. Steklov AN SSSR, 120 (1982) 159. Translation: (Plenum Press, New York, 1986) p.999;MathSciNetGoogle Scholar
  12. [9a]
    Zwanziger D., Nucl. Phys. B209 (1982) 336.Google Scholar
  13. [10]
    Christ N.M. and Lee T.D., Phys.Rev. D22 (1980) 939.MathSciNetADSGoogle Scholar
  14. [11]
    Dell’Antonio G. and Zwanziger D., Nucl.Phys. B326 (1989) 333.MathSciNetADSCrossRefGoogle Scholar
  15. [12]
    van Baal P., Nucl.Phys. B369 (1992) 259.ADSCrossRefGoogle Scholar
  16. [13]
    van Baal P. and van den Heuvel B., Nucl.Phys. B417 (1994) 215.ADSCrossRefGoogle Scholar
  17. [14]
    ’t Hooft G., Phys.Rev. D14 (1976) 3432.ADSGoogle Scholar
  18. [15]
    van den Heuvel B.M, Phys.Lett. B368 (1996) 124;ADSGoogle Scholar
  19. [15a]
    van den Heuvel B.M, Phys.Lett. B386 (1996) 233;ADSGoogle Scholar
  20. [b]
    van den Heuvel B.M, Nucl.Phys. B488 (1997) 282.ADSCrossRefGoogle Scholar
  21. [16]
    Michael C. and Teper M., Phys.Lett. B199 (1987) 95.ADSGoogle Scholar
  22. [17]
    van Baal P., Global issues in gauge fixing, in: “Non-perturbative approaches to Quantum Chromodynamics”, ed. D. Diakonov, (Gatchina, 1995) p.4.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Pierre van Baal
    • 1
    • 2
  1. 1.Isaac Newton Institute for Mathematical SciencesCambridgeUK
  2. 2.Instituut-Lorentz for Theoretical PhysicsUniversity of LeidenRA LeidenThe Netherlands

Personalised recommendations