Skip to main content

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 8))

  • 140 Accesses

Abstract

It has been suggested [1] to approximate geometry by dense Feynman graphs of the same topology, taking the number of vertices to infinity. The dynam ically triangulated random surfaces summed on different topologies are then viewed as the manifold for string propagation. Summing up Feynman graphs of the O(N) matrix model in d dimensions results in a genus expansion and it provides, in some sense, a nonperturbative treatment of string theory when the double scaling limit is enforced [2]. If these efforts could be extended to d > 1 dimensions, then a major progress would have been achieved in studying a long lasting problem in elementary particle theory. Namely, the relation between d dimensional quantum field theory and its possible formulation in terms of strings. The possibility of reaching a “stringy” representation of SU(N) and U(N) quantum field theory in a correlated singular limit was proposed some time ago in [3].

A Short Summary — Les Houches February 1997

This research was supported in part by a grant from the Israel Science Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. David F., Nucl. Phys. B257 [FS14] (1985) 45, 543.

    Article  ADS  Google Scholar 

  2. Ambjørn J., Durhuus B. and Fröhlich J., Nucl. Phys. B257 [FS14] (1985) 433.

    Article  ADS  Google Scholar 

  3. Kazakov V.A., Phys. Lett. B150 (1985) 282.

    MathSciNet  Google Scholar 

  4. Douglas M. and Shenker S., Nucl. Phys. B335 (1990) 635.

    Article  MathSciNet  ADS  Google Scholar 

  5. Brézin E. and Kazakov V., Phys. Lett. B236 (1990) 144.

    MathSciNet  Google Scholar 

  6. Gross D. and Migdal A.A., Phys. Rev. Lett. 64 (1990) 127.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Gross D. and Migdal A.A Nucl. Phys. B340 (1990) 333.

    Article  MathSciNet  ADS  Google Scholar 

  8. Douglas M. R., Phys. Lett. B238 (1990) 176.

    MathSciNet  Google Scholar 

  9. F. David F., Mod. Phys. Lett. A5 (1990) 1019.

    Article  ADS  MATH  Google Scholar 

  10. Neuberger H., Nucl. Phys. B340 (1990) 703.

    Article  MathSciNet  ADS  Google Scholar 

  11. David F. and Neuberger H., Phys. Lett. B269 (1991) 134.

    MathSciNet  Google Scholar 

  12. Nishigaki S. and Yoneya T., Nucl. Phys. B348 (1991) 787.

    Article  MathSciNet  ADS  Google Scholar 

  13. Anderson A., Myers R.C. and Periwal V., Phys. Lett. B254 (1991) 89.

    MathSciNet  Google Scholar 

  14. Anderson A., Myers R.C. and Periwal V., Nucl. Phys. B360 (1991) 463.

    Article  MathSciNet  ADS  Google Scholar 

  15. Di Vecchia P., Kato M. and Ohta N., Nucl. Phys. B357 (1991) 495.

    Article  ADS  Google Scholar 

  16. Zinn-Justin J., Phys. Lett. B257 (1991) 335.

    MathSciNet  Google Scholar 

  17. Di Vecchia P., Kato M. and Ohta N., Int. J. Mod. Phys. A7 (1992) 1391.

    Article  ADS  Google Scholar 

  18. Yoneya T., Prog. Theor. Phys. Suppl. 107 (1992) 229.

    Article  ADS  Google Scholar 

  19. Di Vecchia P. and Moshe M., Phys. Lett. B300 (1993) 49.

    MathSciNet  Google Scholar 

  20. Eyal G., Moshe M., Nishigaki S. and Zinn-Justin J., Nucl. Phys. B470 (1996) 369.

    Article  ADS  Google Scholar 

  21. Bardeen W.A., Moshe M. and Bander M., Phys. Rev. Lett. 52 (1984) 1188. See also

    Article  ADS  Google Scholar 

  22. Bardeen W. A. and Moshe M., Phys. Rev. D 28 (1983) 1372.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moshe, M. (1998). Quantum Field Theory in Singular Limits. In: Grangé, P., Neveu, A., Pauli, H.C., Pinsky, S., Werner, E. (eds) New Non-Perturbative Methods and Quantization on the Light Cone. Centre de Physique des Houches, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08973-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08973-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64520-7

  • Online ISBN: 978-3-662-08973-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics