Colour-Dielectric Gauge Theory on a Transverse Lattice

  • B. van de Sande
  • S. Dalley
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 8)


We investigate consequences of the effective colour-dielectric formulation of lattice gauge theory using the light-cone Hamiltonian formalism with a transverse lattice [1]. As a quantitative test of this approach, we have performed extensive analytic and numerical calculations for 2 + 1-dimensional pure gauge theory in the large N limit. We study the structure of coupling constant space for our effective potential by comparing with results available from conventional Euclidean lattice Monte Carlo simulations of this system. In particular, we calculate and measure the scaling behaviour of the entire low-lying glueball spectrum, glueball wavefunctions, string tension, asymptotic density of states, and deconfining temperature.


Gauge Theory Lattice Spacing Wilson Loop String Tension Polyakov Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dalley S. and van de Sande B., Cambridge University report No. DAMTP-97–16, hep-ph/9704408.Google Scholar
  2. [2]
    Teper M., Phys. Lett. 289B (1992) 115;MathSciNetADSGoogle Scholar
  3. [2a]
    Teper M., Phys. Lett. 311B (1993) 223;Google Scholar
  4. [2b]
    Teper M., Nucl. Phys. (Proc. Suppl.) B53 (1997) 715; Oxford University Report OUTP-97–01P (unpublished) hep-lat/9701004.ADSCrossRefGoogle Scholar
  5. [3]
    Wilson K.G., Phys. Rev. D 10 (1974) 2445.ADSCrossRefGoogle Scholar
  6. [4]
    Bardeen W.A. and Pearson R.B., Phys. Rev. D 14 (1976) 547;ADSCrossRefGoogle Scholar
  7. [4a]
    Bardeen W.A., Pearson R.B. and Rabinovici E., Phys. Rev. D 21 (1980) 1037.ADSCrossRefGoogle Scholar
  8. [5]
    Eguchi T. and Kawai H., Phys. Rev. Lett. 48 (1983) 1063.ADSCrossRefGoogle Scholar
  9. [6]
    Löscher M., Nucl. Phys. B180 (1981) 317;ADSCrossRefGoogle Scholar
  10. [6a]
    de Forcrand P., Schneider H., Teper M., Phys. Lett. B160 (1985) 137.Google Scholar
  11. [7]
    Hagedorn R., Nuovo Cimento Suppl. 3 (1965) 147;Google Scholar
  12. [7a]
    Frautchi S., Phys. Rev. D 3 (1971) 2821;ADSCrossRefGoogle Scholar
  13. [7b]
    Carlitz R.D., Phys. Rev. D 5 (1972) 3231.ADSCrossRefGoogle Scholar
  14. [8]
    Billo M., Caselle M., D’Adda A. and Panzeri S., Int. J. Mod. Phys. A 12 (1997) 1783.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • B. van de Sande
    • 1
  • S. Dalley
    • 2
  1. 1.Institut Für Theoretische Physik IIIErlangenGermany
  2. 2.Department of Applied Mathematics and Theoretical PhysicsCambridgeEngland

Personalised recommendations