Skip to main content

Part of the book series: Centre de Physique des Houches ((LHWINTER,volume 8))

  • 143 Accesses

Abstract

It is generally believed that QCD with massless quarks undergoes a chiral phase transition (see [1] for a review). This

leads to important observable signatures in the real world with two light quarks. The order parameter of the chiral phase transition is the chiral condensate (Ψ̄Ψ), is directly related to the average spectral density of the Dirac operator [2]. However, the eigenvalues of the Dirac operator fluctuate about their average position. The question we wish to address in this lecture is to what extent such fluctuations are universal. If that is the case, they do not depend on the full QCD dynamics and can be obtained from a much simpler chiral Random Matrix Theory (chRMT) with the global symmetries of the QCD partition function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeTar C., Quark-gluon plasma in numerical simulations of QCD, in Quark gluon plasma 2, R. Hwa ed., World Scientific 1995.

    Google Scholar 

  2. Banks T. and Casher A., Nucl. Phys. B169 (1980) 103.

    Article  MathSciNet  ADS  Google Scholar 

  3. Bohigas O. and Giannoni M., Lecture notes in Physics 209 (1984) 1.

    Article  MathSciNet  ADS  Google Scholar 

  4. Leutwyler H. and Smilga A., Phys. Rev. D46 (1992) 5607.

    MathSciNet  ADS  Google Scholar 

  5. Kalkreuter T., Comp. Phys. Comm. 95 (1996) 1.

    Article  ADS  MATH  Google Scholar 

  6. Shuryak E. and Verbaarschot J., Nucl. Phys. A560 (1993) 306.

    Article  Google Scholar 

  7. Guhr T., Müller-Groeling A. and Weidenmüller H.A., Phys. Rep. (1997).

    Google Scholar 

  8. Verbaarschot J., Proceedings Hirschegg 1997, hep-ph/9705355.

    Google Scholar 

  9. Verbaarschot J., Phys. Rev. Lett. 72 (1994) 2531;

    Article  MathSciNet  ADS  Google Scholar 

  10. Verbaarschot J., Phys. Lett. B329 (1994) 351;

    MathSciNet  Google Scholar 

  11. Verbaarschot J., Nucl. Phys. B427 (1994) 434.

    Article  MathSciNet  Google Scholar 

  12. Verbaarschot J. and Zahed I., Phys. Rev. Lett. 70 (1993) 3852.

    Article  ADS  Google Scholar 

  13. Brézin E., Hikami S. and Zee A., Nucl. Phys. B464 (1996) 411.

    Article  ADS  Google Scholar 

  14. Jackson A., Sener M. and Verbaarschot J., Nucl. Phys. B479 (1996) 707.

    Article  ADS  Google Scholar 

  15. Nishigaki S., Phys. Lett. B (1996); Akemann G., Damgaard P., Magnea U. and Nishigaki S., hep-th/9609174.

    Google Scholar 

  16. Jackson A., Sener M. and Verbaarschot J., hep-th/9704056.

    Google Scholar 

  17. Guhr T. and Wettig T., hep-th/9704055.

    Google Scholar 

  18. Verbaarschot J., Nucl. Phys. B426 (1994) 559.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Zirnbauer M., J. Math. Phys. 37 (1996) 4986.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Hands S. and Teper M., Nucl. Phys. B347 (1990) 819.

    Article  ADS  Google Scholar 

  21. Halasz M. and Verbaarschot J., Phys. Rev. Lett. 74 (1995) 3920.

    Article  ADS  Google Scholar 

  22. Halasz M., Kalkreuter T. and Verbaarschot J., hep-lat/9607042.

    Google Scholar 

  23. Berbenni-Bitsch M.E. et al., hep-lat/9704018.

    Google Scholar 

  24. Chandrasekharan S., Lattice 1994, 475;

    Google Scholar 

  25. Chandrasekharan S. and Christ N., Lattice 1995, 527; Christ N., Lattice 1996.

    Google Scholar 

  26. Verbaarschot J., Phys. Lett. B368 (1996) 137.

    MathSciNet  Google Scholar 

  27. Jackson A. and Verbaarschot J., Phys. Rev. D53 (1996) 7223.

    ADS  Google Scholar 

  28. Wettig T., Schäfer A. and Weidenmüller H., Phys. Lett. B367 (1996) 28.

    Google Scholar 

  29. Halasz M., Osborn J. and Verbaarschot J., hep-lat/9704007.

    Google Scholar 

  30. Stephanov M., Phys. Rev. Lett. 76 (1996) 4472.

    Article  ADS  Google Scholar 

  31. Fyodorov Y., Khoruzhenko B., and Sommers H., Phys. Lett. A 226, 46 (1997); cond-mat/9703152.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Shuryak E. and Schäfer Th., private communication.

    Google Scholar 

  33. Baillie C. et al., Phys. Lett. 197B, 195 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verbaarschot, J.J.M. (1998). Spectral Fluctuations of the QCD Dirac Operator. In: Grangé, P., Neveu, A., Pauli, H.C., Pinsky, S., Werner, E. (eds) New Non-Perturbative Methods and Quantization on the Light Cone. Centre de Physique des Houches, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08973-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08973-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64520-7

  • Online ISBN: 978-3-662-08973-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics