Advertisement

Spectral Fluctuations of the QCD Dirac Operator

  • J. J. M. Verbaarschot
Part of the Centre de Physique des Houches book series (LHWINTER, volume 8)

Abstract

It is generally believed that QCD with massless quarks undergoes a chiral phase transition (see [1] for a review). This

leads to important observable signatures in the real world with two light quarks. The order parameter of the chiral phase transition is the chiral condensate (Ψ̄Ψ), is directly related to the average spectral density of the Dirac operator [2]. However, the eigenvalues of the Dirac operator fluctuate about their average position. The question we wish to address in this lecture is to what extent such fluctuations are universal. If that is the case, they do not depend on the full QCD dynamics and can be obtained from a much simpler chiral Random Matrix Theory (chRMT) with the global symmetries of the QCD partition function.

Keywords

Dirac Operator Random Matrix Chiral Condensate Wilson Fermion Chiral Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    DeTar C., Quark-gluon plasma in numerical simulations of QCD, in Quark gluon plasma 2, R. Hwa ed., World Scientific 1995.Google Scholar
  2. [2]
    Banks T. and Casher A., Nucl. Phys. B169 (1980) 103.MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    Bohigas O. and Giannoni M., Lecture notes in Physics 209 (1984) 1.MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Leutwyler H. and Smilga A., Phys. Rev. D46 (1992) 5607.MathSciNetADSGoogle Scholar
  5. [5]
    Kalkreuter T., Comp. Phys. Comm. 95 (1996) 1.ADSMATHCrossRefGoogle Scholar
  6. [6]
    Shuryak E. and Verbaarschot J., Nucl. Phys. A560 (1993) 306.CrossRefGoogle Scholar
  7. [7]
    Guhr T., Müller-Groeling A. and Weidenmüller H.A., Phys. Rep. (1997).Google Scholar
  8. [8]
    Verbaarschot J., Proceedings Hirschegg 1997, hep-ph/9705355.Google Scholar
  9. [9]
    Verbaarschot J., Phys. Rev. Lett. 72 (1994) 2531;MathSciNetADSCrossRefGoogle Scholar
  10. [9a]
    Verbaarschot J., Phys. Lett. B329 (1994) 351;MathSciNetGoogle Scholar
  11. [9b]
    Verbaarschot J., Nucl. Phys. B427 (1994) 434.MathSciNetCrossRefGoogle Scholar
  12. [10]
    Verbaarschot J. and Zahed I., Phys. Rev. Lett. 70 (1993) 3852.ADSCrossRefGoogle Scholar
  13. [11]
    Brézin E., Hikami S. and Zee A., Nucl. Phys. B464 (1996) 411.ADSCrossRefGoogle Scholar
  14. [12]
    Jackson A., Sener M. and Verbaarschot J., Nucl. Phys. B479 (1996) 707.ADSCrossRefGoogle Scholar
  15. [13]
    Nishigaki S., Phys. Lett. B (1996); Akemann G., Damgaard P., Magnea U. and Nishigaki S., hep-th/9609174.Google Scholar
  16. [14]
    Jackson A., Sener M. and Verbaarschot J., hep-th/9704056.Google Scholar
  17. [15]
    Guhr T. and Wettig T., hep-th/9704055.Google Scholar
  18. [16]
    Verbaarschot J., Nucl. Phys. B426 (1994) 559.MathSciNetADSMATHCrossRefGoogle Scholar
  19. [17]
    Zirnbauer M., J. Math. Phys. 37 (1996) 4986.MathSciNetADSMATHCrossRefGoogle Scholar
  20. [18]
    Hands S. and Teper M., Nucl. Phys. B347 (1990) 819.ADSCrossRefGoogle Scholar
  21. [19]
    Halasz M. and Verbaarschot J., Phys. Rev. Lett. 74 (1995) 3920.ADSCrossRefGoogle Scholar
  22. [20]
    Halasz M., Kalkreuter T. and Verbaarschot J., hep-lat/9607042.Google Scholar
  23. [21]
    Berbenni-Bitsch M.E. et al., hep-lat/9704018.Google Scholar
  24. [22]
    Chandrasekharan S., Lattice 1994, 475;Google Scholar
  25. [22a]
    Chandrasekharan S. and Christ N., Lattice 1995, 527; Christ N., Lattice 1996.Google Scholar
  26. [23]
    Verbaarschot J., Phys. Lett. B368 (1996) 137.MathSciNetGoogle Scholar
  27. [24]
    Jackson A. and Verbaarschot J., Phys. Rev. D53 (1996) 7223.ADSGoogle Scholar
  28. [25]
    Wettig T., Schäfer A. and Weidenmüller H., Phys. Lett. B367 (1996) 28.Google Scholar
  29. [26]
    Halasz M., Osborn J. and Verbaarschot J., hep-lat/9704007.Google Scholar
  30. [27]
    Stephanov M., Phys. Rev. Lett. 76 (1996) 4472.ADSCrossRefGoogle Scholar
  31. [28]
    Fyodorov Y., Khoruzhenko B., and Sommers H., Phys. Lett. A 226, 46 (1997); cond-mat/9703152.MathSciNetADSMATHCrossRefGoogle Scholar
  32. [29]
    Shuryak E. and Schäfer Th., private communication. Google Scholar
  33. [30]
    Baillie C. et al., Phys. Lett. 197B, 195 (1987).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • J. J. M. Verbaarschot
    • 1
  1. 1.Department of PhysicsSUNY at Stony BrookStony BrookUSA

Personalised recommendations