• P. Grangé
  • A. Neveu
  • H. C. Pauli
  • S. Pinsky
  • E. Werner
Conference paper
Part of the Centre de Physique des Houches book series (LHWINTER, volume 8)


In his original paper Dirac [1] showed that the uniqueness of the non-relativistic hamiltonian description is lost in the relativistic case. For massive particles several initial surfaces are possible which cut the world lines only once. Among them the light front one has the largest stability group [2] : seven generators leave invariant the hypersurface τ = t + z = 0:
  • P x , P y , generators of transverse translation,

  • P z + P t , combined generator of translation in the (z, t) direction,

  • R z , generator of the rotations around the z axis in the light reference frame (LRF),

  • Λ, generator of boosts in the τ direction,

  • Q z (Q y ), sum of generators of boosts in the x(y) directions and of rotation around the y(x) axes.


Zero Mode Light Cone Chiral Symmetry Breaking Particle Sector Vacuum Sector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dirac P.A.M., Rev of Modern Physics 216 (1949) 393.MathSciNetGoogle Scholar
  2. [2]
    Susskind L., Phys. Rev. 165 (1968) 1535.ADSCrossRefGoogle Scholar
  3. [3]
    Weinberg S., Phys. Rev. 150 (1966) 1313.ADSCrossRefGoogle Scholar
  4. [4]
    Bardacki K. and Halpern M.B., Phys. Rev. 176 (1968) 1686.ADSCrossRefGoogle Scholar
  5. [5]
    Chang S.J. and Ma S.K., Phys. Rev. 180 (1969) 1506.ADSCrossRefGoogle Scholar
  6. [6]
    Domokos G., in : “Lectures in Theoretical Physics” Vol. XIV, 1971, A.O. Barut and W.E. Brittin eds. Colorado University Press Boulder (1972).Google Scholar
  7. [7]
    Dirac P.A.M., Canad. J. Math 2 (1950) 1.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Dirac P.A.M., Lectures on Quantum Mechanics Benjamin, New-York (1964).Google Scholar
  9. [8a]
    Heinzl T., Krusche S. and Werner E., Nucl. Phys. A532 (1991) 429.MathSciNetCrossRefGoogle Scholar
  10. [9]
    Heinzl T., Krusche S. and Werner E., Phys. Lett. B256 (1991) 55.MathSciNetGoogle Scholar
  11. [10]
    Heinzl T., Krusche S. and Werner E., Phys. Lett. B275 (1992) 410.MathSciNetGoogle Scholar
  12. [11]
    Heinzl T., Krusche S. and Werner E., Nucl. Phys. A532 (1991) 429.MathSciNetCrossRefGoogle Scholar
  13. [12]
    Robertson D.G., Phys. Rev. D47 (1993) 2549.MathSciNetADSGoogle Scholar
  14. [13]
    Pinsky S.S., Van de Sande B. and Bender C.M., Phys. Rev. D48 (1993) 816.Google Scholar
  15. [13a]
    Pinsky S.S. and Van de Sande B., Phys. Rev. D49 (1994) 2001.ADSCrossRefGoogle Scholar
  16. [13b]
    Pinsky S. S., Van de Sande B. and Hiller J.R., Phys. Rev. D51 (1995) 726.ADSCrossRefGoogle Scholar
  17. [14]
    Heinzl T., Stern C., Werner E. and Zellermann B., Preprint TPR-95–20, to appear in Z. Phys. C.Google Scholar
  18. [15]
    Dietmaier C., Heinzl T., Schaden M. and Werner E., Z. Phys. A333 (1989) 215.ADSGoogle Scholar
  19. [16]
    Pesando I., Mod. Phys. Lett. A10 (1995) 525.ADSCrossRefGoogle Scholar
  20. [17]
    Wilson K. et al., Phys. Rev. D49 (1994) 6720.MathSciNetADSGoogle Scholar
  21. [18]
    Fadeev L.D. and Jackiw R., Phys. Rev. Lett. 60 (1988) 1692.MathSciNetADSCrossRefGoogle Scholar
  22. [19]
    Franke V.A., Novozhilov Yu.V. and Prokhvatilov E.V., Lett. Math. Phys. 5 (1891) 239, 431.MathSciNetADSCrossRefGoogle Scholar
  23. [20]
    Pause T., Diploma Thesis, Regensburg, 1995.Google Scholar
  24. [21]
    Heinzl T., Nucl. Phys. B (Proc. Suppl.) 39 (1995) 217.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • P. Grangé
    • 1
  • A. Neveu
    • 1
  • H. C. Pauli
    • 2
  • S. Pinsky
    • 3
  • E. Werner
    • 4
  1. 1.LPMMontpellierFrance
  2. 2.MPIHeidelbergGermany
  3. 3.OSUColombusUSA
  4. 4.Univ. RegensburgGermany

Personalised recommendations