Skip to main content

New Algorithms and the Physics of Protein Folding

  • Chapter
New Directions in Statistical Physics

Abstract

Recent years have seen an increased interest in the physics of protein folding. While most investigations focus on minimal protein models, we will show that the thermodynamics of folding can also be studied for realistic models, when modern simulation techniques such as the generalized-ensemble approach are employed. Some recent results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.A. Dill, H.S. Chan: Nature Structural Biology 4, 10 (1997)

    Article  Google Scholar 

  2. J.N. Onuchic, Z. Luthey-Schulten, P.G. Wolynes: Annual Reviews in Physical Chemistry, 48, 545 (1997)

    Article  ADS  Google Scholar 

  3. M. Vasquez, G. Némethy, H.A. Scheraga: Chem. Rev. 94, 2183 (1994)

    Article  Google Scholar 

  4. M.J. Sippl, G. Némethy, H.A. Scheraga: J. Phys. Chem. 88, 6231 (1984), and references therein

    Google Scholar 

  5. B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus: J. Comp. Chem. 4, 187 (1983)

    Article  Google Scholar 

  6. S.J. Weiner, P.A. Kollman, D.T. Nguyen, D.A. Case: J. Comp. Chem. 7, 230 (1986)

    Article  Google Scholar 

  7. U.H.E. Hansmann, Y. Okamoto: Curr. Opin. Struc. Biol. 9, 177 (1999)

    Article  Google Scholar 

  8. U.H.E. Hansmann, Y. Okamoto: J. Comp. Chem. 18, 920 (1997)

    Article  Google Scholar 

  9. U.H.E. Hansmann, Y. Okamoto: `The Generalized-Ensemble Approach for Protein Folding Simulations’, In Annual Reviews in Computational Physics VI Ed. by D. Stauffer (World Scientific, Singapore 1999 ) pp. 129–157

    Google Scholar 

  10. G.M. Torrie, J.P. Valleau: J. Comput. Phys. 23, 187 (1977)

    Article  ADS  Google Scholar 

  11. B.A. Berg, T. Neuhaus: Phys. Lett. B 267, 249 (1991); Phys. Rev. Lett. 68, 9 (1992); B.A. Berg: Int. J. Mod. Phys. C3, 1083 (1992)

    Article  ADS  Google Scholar 

  12. B. Hesselbo, R.B. Stinchcombe: Phys. Rev. Lett. 74, 2151 (1995)

    Article  ADS  Google Scholar 

  13. A.P. Lyubartsev, A.A. Martinovski, S.V. Shevkunov, P.N. VorontsovVelyaminov: J. Chem. Phys. 96, 1776 (1992); E. Marinari, G. Parisi: Europhys. Lett. 19, 451 (1992)

    ADS  Google Scholar 

  14. U.H.E. Hausmann, Y. Okamoto: J. Comp. Chem. 14, 1333 (1993)

    Article  Google Scholar 

  15. U.H.E. Hansmann, Y. Okamoto, F. Eisenmenger: Chem. Phys. Lett. 259, 321 (1996)

    Article  ADS  Google Scholar 

  16. N. Nakajima, H. Nakamura, A. Kidera: J. Phys. Chem. 101, 817 (1997)

    Article  Google Scholar 

  17. J. Higo, N. Nakajima, H. Shirai, A. Kidera, H. Nakamura: J. Comp. Chem. 18, 2086 (1997)

    Article  Google Scholar 

  18. S. Kumar, P.W. Payne, M. Vasquez: J. Comp. Chem. 17, 1269 (1996)

    Article  Google Scholar 

  19. U.H.E. Hansmann, Y. Okamoto: J. Phys. Soc. (Jpn.) 63, 3945 (1994); Physica A 212, 415 (1994)

    ADS  Google Scholar 

  20. Y. Okamoto, U.H.E. Hansmann: J. Phys. Chem. 99, 11276 (1995)

    Article  Google Scholar 

  21. A.M. Ferrenberg, R.H. Swendsen: Phys. Rev. Lett. 61, 2635 (1988); Phys. Rev. Lett. 63, 1658(E) (1989), and references given in the erratum.

    Google Scholar 

  22. U.H.E. Hansmann: Phys. Rev. E 56, 6200 (1997)

    Article  ADS  Google Scholar 

  23. U.H.E. Hansmann, P. de Forcrand: Int. J. Mod. Phys. C 8, 1085 (1997)

    Article  ADS  Google Scholar 

  24. F. Wang, D.P. Landau: Phys. Rev. Let. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  25. U.H.E. Hansmann, Y. Okamoto: J. Chem. Phys. 110, 1267 (1999); 111, 1339 (E) (1999)

    Google Scholar 

  26. U.H.E. Hansmann, Y. Okamoto: Phys. Rev. E 56, 2228 (1997)

    Article  ADS  Google Scholar 

  27. E.M.F. Curado, C. Tsallis: J. Phys. A: Math. Gen. 27, 3663 (1994)

    Article  ADS  Google Scholar 

  28. W. Wenzel, K. Hamacher: Phys. Rev. Let. 82, 3003 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. U.H.E. Hansmann: Eur.Phys.J.B 12, 607 (1999)

    Article  ADS  Google Scholar 

  30. U.H.E. Hansmann, L.T. Wille: Phys. Rev. Lett. 88, 068105 (2002)

    Google Scholar 

  31. N. Go, H.A. Scheraga: Macromolecules 3, 170 (1970)

    ADS  Google Scholar 

  32. M.G. Wu, M.W. Deem: J. Chem. Phys. 111, 6625 (1999)

    Article  ADS  Google Scholar 

  33. K. Hukushima, K. Nemoto: J. Phys. Soc. (Jpn.) 65, 1604 (1996); G.J. Geyer: Stat. Sci. 7, 437 (1992); M.C. Tesi, E.J.J. van Rensburg, E. Orlandini, S.G. Whittington: J. Stat. Phys. 82, 155 (1996)

    ADS  Google Scholar 

  34. U.H.E. Hansmann: Chem. Phys. Lett. 281, 140 (1997)

    Article  ADS  Google Scholar 

  35. A. Chakrabartty, R.L. Baldwin: In Protein Folding: In Vivo and In Vitro Ed. by J.L. Cleland and J. King, (ACS Press, Washington, D.C. 1993 ) pp. 166–177

    Google Scholar 

  36. J.D. Bryngelson, J.N. Onuchic, N.D. Socci, P.G. Wolynes: Proteins 21, 167 (1995)

    Article  Google Scholar 

  37. M. Karplus, M. Sali: Curr. Opin. Struc. Biol. 5, 58 (1995)

    Article  Google Scholar 

  38. J.D. Bryngelson, P.G. Wolynes: Proc. Natl. Acad. Sci. (USA) 84, 7524 (1987)

    Article  ADS  Google Scholar 

  39. D. Poland, H.A. Scheraga: Theory of Helix-Coil Transitions in Biopolymers ( Academic Press, New York 1970 )

    Google Scholar 

  40. J.P. Kemp, Z.Y. Chen: Phys. Rev. Lett. 81, 3880 (1998)

    Article  ADS  Google Scholar 

  41. N.A. Alves, U.H.E. Hansmann: Phys. Rev. Lett. 84 1836 (2000)

    Article  ADS  Google Scholar 

  42. J.P. Kemp, U.H.E. Hansmann, Zh.Y. Chen: Eur. Phys. J. B 15, 371 (2000)

    Article  ADS  Google Scholar 

  43. N.A. Alves, U.H.E. Hansmann: Physica A 292 509 (2001)

    Article  ADS  Google Scholar 

  44. B.H. Zimm, J.K. Bragg: J. Chem. Phys. 31, 526 (1959)

    Article  ADS  Google Scholar 

  45. M.E. Fisher: in Lectures in Theoretical Physics, Vol. 7c, ( University of Colorado Press, Boulder 1965 ), p. 1

    Google Scholar 

  46. C. Itzykson, R.B. Pearson, J.B. Zuber: Nucl. Phys. B 220 [FS8], 415 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  47. C.N. Yang, T.D. Lee: Phys. Rev. 87, 404 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. T.D. Lee, C.N. Yang: Phys. Rev. 87 410 (1952)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. M. Fukugita, H. Mino, M. Okawa, A. Ukawa: J. Stat. Phys. 59, 1397 (1990); and references given therein

    Google Scholar 

  50. U.H.E. Hansmann, M. Masuya, Y. Okamoto: Proc. Natl. Acad. Sci. U.S.A. 94, 10652 (1997)

    Article  ADS  Google Scholar 

  51. U.H.E. Hansmann, Y Okamoto, J.N. Onuchic: Proteins 34, 472 (1999)

    Article  Google Scholar 

  52. U.H.E. Hansmann, J.N. Onuchic: J. Chem. Phys. 115 1601 (2001)

    Article  ADS  Google Scholar 

  53. N.A.Alves, U.H.E. Hansmann: Int. J. Mod. Phys. C 11, 301 (2000)

    ADS  Google Scholar 

  54. U.H.E. Hausmann, Y. Okamoto: J. Phys. Chem. 102, 653 (1998)

    Article  Google Scholar 

  55. U.H.E. Hansmann, Y. Okamoto: J. Phys. Chem. 103, 1595 (1999)

    Article  Google Scholar 

  56. R.A. Sayle, E.J. Milner-White: TIBS 20, 374 (1995)

    Google Scholar 

  57. Y. Duan, P.A. Kollman: Science 282, 740 (1998)

    Article  ADS  Google Scholar 

  58. C.J. McKnight, D.S. Doehring, P.T. Matsudaria, P.S. Kim: J. Mol. Biol. 260, 126 (1996)

    Article  Google Scholar 

  59. T. Ooi, M. Obatake, G. Nemethy, H.A. Scheraga: Proc. Natl. Acad. Sci. USA 8, 3086 (1987)

    Article  ADS  Google Scholar 

  60. L. Wesson, D. Eisenberg: Protein Science 1, 227 (1992)

    Article  Google Scholar 

  61. F. Eisenmenger, U.H.E. Hansmann, Sh. Hayryan, C.-K. Hu: Comp. Phys. Comm. 138, 192 (2001)

    Article  ADS  MATH  Google Scholar 

  62. T. Schaumann, W. Braun, K. Wuthrich: Biopolymers 29, 679 (1990)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hansmann, U.H.E. (2004). New Algorithms and the Physics of Protein Folding. In: Wille, L.T. (eds) New Directions in Statistical Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08968-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08968-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07739-5

  • Online ISBN: 978-3-662-08968-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics