Geometric Methods for Anisotopic Inverse Boundary Value Problems

  • W. R. B. Lionheart
Conference paper


Electromagnetic fields have a natural representation as differential forms. Typically the measurement of a field involves an integral over a submanifold of the domain. Differential forms arise as the natural objects to integrate over submanifolds of each dimension. We will see that the (possibly anisotropic) material response to a field can be naturally associated with a Hodge star operator.


Riemannian Manifold Differential Form Tensor Field Principal Symbol Inverse Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aben H., Integrated Photoelasticity ( New York: McGraw-Hill ) 1979.Google Scholar
  2. 2.
    G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, to appear SIAM J. Math. Anal.Google Scholar
  3. 3.
    M. Berger, D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Differential Geometry 3 1969 379–392.MathSciNetMATHGoogle Scholar
  4. 4.
    A.R. Borges et al., Development of Electromagnetic Tomography (EMT) for Industrial Applications, Proc. 1st World Congress on Industrial Process Tomography (ed T. York), Buxton, 219–225, 1999.Google Scholar
  5. 5.
    Y. Colin de Verdière Spectres de Graphes, SMF Cours Spécialisés 4, 1998Google Scholar
  6. 6.
    GFD. Duff and DC. Spencer, Harmonic Tensors on Riemannian manifolds with boundary, Ann. of Math., 56, 128–156, 1952MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, Publish or Perish, 1984, electronic reprint yu/EMIS/monographs/gilkey/index.html.Google Scholar
  8. 8.
    M.S. Joshi and W.R.B. Lionheart, An inverse boundary value problem for harmonic differential forms. Submitted for publication. Pre-print http://www. Scholar
  9. 9.
    M.S. Joshi, Introduction to Pseudo-differential operators, e-print math.AP/9906155, 1999,
  10. 10.
    M.S. Joshi, S. McDowall, Total determination of material parameters from electromagnetic boundary information, Pacific J. Math., 193, 107–129, 2000MathSciNetMATHGoogle Scholar
  11. 11.
    S. Kobayashi, Transformation groups in differential geometry. Springer-Verlag, 1972.Google Scholar
  12. 12.
    R.V. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurement at the boundary, SIAM-AMS Proceedings 14, 113–123, 1983MathSciNetGoogle Scholar
  13. 13.
    P.R. Kotiuga, Metric dependent aspects of inverse problems and functionals based on helicity, Journal of Applied Physics 73: (10) 5437–9Google Scholar
  14. 14.
    M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, preprint 1999.Google Scholar
  15. 15.
    J. Lee, G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42, 1097–1112, 1989MathSciNetMATHGoogle Scholar
  16. 16.
    W.R.B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging. Inverse Problems Volume 13, February, 125–134, 1997Google Scholar
  17. 17.
    W.R.B. Lionheart, Boundary Shape and Electrical Impedance Tomography. Inverse Problems, Vol 14, No 1, 139–147, 1998MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurement. Amer. J. Math. 115, 1161–1187, 1993MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    G. Nakamura and G. Uhlmann, Inverse problems at the boundary for an elastic medium, SIAM J. Math. Anal., 26, 263–279, 1995MathSciNetMATHGoogle Scholar
  20. 20.
    Nakamura, Gen; Uhlmann, Gunther, A layer stripping algorithm in elastic impedance tomography. Inverse problems in wave propagation (Minneapolis. MN, 1995 ), 375–384, IMA Vol. Math. Appl., 90, Springer, New York, 1997Google Scholar
  21. 21.
    P. Ola, L. Päivärinta, E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J. 70, 617–653, 1993.MATHGoogle Scholar
  22. 22.
    Z. Ren, A. Razek, Computation of 3-D electromagnetic field using differential forms based elements and dual formulations Internat. J. Nurner. Modelling EL 9: (1–2) 81–98 1996CrossRefGoogle Scholar
  23. 23.
    M.A. Shubin, Pseudo-differential Operators and Spectral Theory, Springer-Verlag, 1985.Google Scholar
  24. 24.
    M. Spivak, Calculus on manifolds. A modern approach to classical theorems of advanced calculus. W. A. Benjamin, Inc., New York-Amsterdam 1965Google Scholar
  25. 25.
    J. Sylvester, Linearizations of anisotropie inverse problems. Inverse problems in mathematical physics (Saariselkä, 1992 ), 231–241, Lecture Notes in Phys., 422, Springer, Berlin, 1993.Google Scholar
  26. 26.
    T. Tarhasaari, L. Kettunen, A. Bossavit, Some realizations of a discrete Hodoge operator: A reinterpretation of finite element techniques. IEEE Transactions on Magnetics 35: (3) 1494–1497 1999CrossRefGoogle Scholar
  27. 27.
    A. Trautman, Deformations of the Hodge map and optical geometry. J. Geom. Phys. 1, 85–95, 1984.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    G. Uhlmann, These proceedings.Google Scholar
  29. 29.
    T. Voronov, Quantization of Forms on the Cotangent Bundle. Comm. Math. Phys., 205, 315–336, 1999MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • W. R. B. Lionheart
    • 1
  1. 1.Department of MathematicsUMISTManchesterUK

Personalised recommendations