Skip to main content

Geometric Methods for Anisotopic Inverse Boundary Value Problems

  • Conference paper
New Analytic and Geometric Methods in Inverse Problems
  • 469 Accesses

Abstract

Electromagnetic fields have a natural representation as differential forms. Typically the measurement of a field involves an integral over a submanifold of the domain. Differential forms arise as the natural objects to integrate over submanifolds of each dimension. We will see that the (possibly anisotropic) material response to a field can be naturally associated with a Hodge star operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aben H., Integrated Photoelasticity ( New York: McGraw-Hill ) 1979.

    Google Scholar 

  2. G. Alessandrini and R. Gaburro, Determining conductivity with special anisotropy by boundary measurements, to appear SIAM J. Math. Anal.

    Google Scholar 

  3. M. Berger, D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold. J. Differential Geometry 3 1969 379–392.

    MathSciNet  MATH  Google Scholar 

  4. A.R. Borges et al., Development of Electromagnetic Tomography (EMT) for Industrial Applications, Proc. 1st World Congress on Industrial Process Tomography (ed T. York), Buxton, 219–225, 1999.

    Google Scholar 

  5. Y. Colin de Verdière Spectres de Graphes, SMF Cours Spécialisés 4, 1998

    Google Scholar 

  6. GFD. Duff and DC. Spencer, Harmonic Tensors on Riemannian manifolds with boundary, Ann. of Math., 56, 128–156, 1952

    Article  MathSciNet  MATH  Google Scholar 

  7. P.B. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer index theorem, Publish or Perish, 1984, electronic reprint http://www.mi.sanu.ac. yu/EMIS/monographs/gilkey/index.html.

    Google Scholar 

  8. M.S. Joshi and W.R.B. Lionheart, An inverse boundary value problem for harmonic differential forms. Submitted for publication. Pre-print http://www. arxiv.org/abs/math.AP/9911212.

    Google Scholar 

  9. M.S. Joshi, Introduction to Pseudo-differential operators, arXiv.org e-print math.AP/9906155, 1999, http://arXiv.org/abs/math.AP/9906155.

  10. M.S. Joshi, S. McDowall, Total determination of material parameters from electromagnetic boundary information, Pacific J. Math., 193, 107–129, 2000

    MathSciNet  MATH  Google Scholar 

  11. S. Kobayashi, Transformation groups in differential geometry. Springer-Verlag, 1972.

    Google Scholar 

  12. R.V. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurement at the boundary, SIAM-AMS Proceedings 14, 113–123, 1983

    MathSciNet  Google Scholar 

  13. P.R. Kotiuga, Metric dependent aspects of inverse problems and functionals based on helicity, Journal of Applied Physics 73: (10) 5437–9

    Google Scholar 

  14. M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-to-Neumann map, preprint 1999.

    Google Scholar 

  15. J. Lee, G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math. 42, 1097–1112, 1989

    MathSciNet  MATH  Google Scholar 

  16. W.R.B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging. Inverse Problems Volume 13, February, 125–134, 1997

    Google Scholar 

  17. W.R.B. Lionheart, Boundary Shape and Electrical Impedance Tomography. Inverse Problems, Vol 14, No 1, 139–147, 1998

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Nakamura and G. Uhlmann, Identification of Lamé parameters by boundary measurement. Amer. J. Math. 115, 1161–1187, 1993

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Nakamura and G. Uhlmann, Inverse problems at the boundary for an elastic medium, SIAM J. Math. Anal., 26, 263–279, 1995

    MathSciNet  MATH  Google Scholar 

  20. Nakamura, Gen; Uhlmann, Gunther, A layer stripping algorithm in elastic impedance tomography. Inverse problems in wave propagation (Minneapolis. MN, 1995 ), 375–384, IMA Vol. Math. Appl., 90, Springer, New York, 1997

    Google Scholar 

  21. P. Ola, L. Päivärinta, E. Somersalo, An inverse boundary value problem in electrodynamics. Duke Math. J. 70, 617–653, 1993.

    MATH  Google Scholar 

  22. Z. Ren, A. Razek, Computation of 3-D electromagnetic field using differential forms based elements and dual formulations Internat. J. Nurner. Modelling EL 9: (1–2) 81–98 1996

    Article  Google Scholar 

  23. M.A. Shubin, Pseudo-differential Operators and Spectral Theory, Springer-Verlag, 1985.

    Google Scholar 

  24. M. Spivak, Calculus on manifolds. A modern approach to classical theorems of advanced calculus. W. A. Benjamin, Inc., New York-Amsterdam 1965

    Google Scholar 

  25. J. Sylvester, Linearizations of anisotropie inverse problems. Inverse problems in mathematical physics (Saariselkä, 1992 ), 231–241, Lecture Notes in Phys., 422, Springer, Berlin, 1993.

    Google Scholar 

  26. T. Tarhasaari, L. Kettunen, A. Bossavit, Some realizations of a discrete Hodoge operator: A reinterpretation of finite element techniques. IEEE Transactions on Magnetics 35: (3) 1494–1497 1999

    Article  Google Scholar 

  27. A. Trautman, Deformations of the Hodge map and optical geometry. J. Geom. Phys. 1, 85–95, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Uhlmann, These proceedings.

    Google Scholar 

  29. T. Voronov, Quantization of Forms on the Cotangent Bundle. Comm. Math. Phys., 205, 315–336, 1999

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lionheart, W.R.B. (2004). Geometric Methods for Anisotopic Inverse Boundary Value Problems. In: Bingham, K., Kurylev, Y.V., Somersalo, E. (eds) New Analytic and Geometric Methods in Inverse Problems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08966-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08966-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07379-3

  • Online ISBN: 978-3-662-08966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics