Genetische Aspekte der Neuropsychologie psychischer Störungen

  • Michael Wagner

Zusammenfassung

Die neuropsychologischen Funktionsdefizite bei psychischen Störungen, wie sie in den anderen Beiträgen dieses Buches im Einzelnen dargestellt werden, sind nicht immer nur die diagnostisch und therapeutisch relevanten Begleiterscheinungen oder Konsequenzen von manifesten Erkrankungen. Sie können auch der Diagnose einer psychischen Störung vorausgehen, ihr Abklingen überdauern und z.T. auch bei biologisch verwandten Familienangehörigen in abgeschwächter Form vorhanden sein. Bei denjenigen psychischen Störungen, bei denen dies der Fall ist, können neuropsychologische Funktionsänderungen als primäre, möglicherweise genetisch bedingte Störungen betrachtet werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abbruzzese M, Ferri S, Scarone S (1997) The selective breakdown of frontal functions in patients with obsessive-compulsive disorder and in patients with schizophrenia: a double dissociation experimental finding. Neuropsychologia 35: 907–912PubMedCrossRefGoogle Scholar
  2. Berman SM, Noble EP (1995) Reduced visuospatial performance in children with the D2 dopamine receptor Al allele. Behav Genet 25: 45–58PubMedCrossRefGoogle Scholar
  3. Bilder RM, Volavka J, Czobor P et al. (2002) Neurocognitive correlates of the COMT Val(158)Met polymorphism in chronic schizophrenia. Biol Psychiatry 52: 701–717PubMedCrossRefGoogle Scholar
  4. Blanes T, McGuire P (1997) Heterogeneity within obsessive compulsive disorder evidence for primary and neuro-developmental subtypes. In: Keshavan MS, Murray RM (eds) Neurodevelopment and adult psychopathology. Cambridge University Press, Cambridge, pp 206–212Google Scholar
  5. Boone KB, Ananth J, Philpott L, Kaur A, Djenderedjian A (1991) Neuropsychological characteristics of nondepressed adults with obsessive-compulsive disorder. Neuropsychiatry Neuropsychol Behav Neurol 4: 96–109Google Scholar
  6. Cannon TD, Zorrilla LE, Shtasel D et al. (1994) Neuropsychological functioning in siblings discordant for schizophrenia and healthy volunteers. Arch Gen Psychiatry 51: 651–661. Die Arbeit zeigt, dass bei den Geschwistern schizophrener Patienten ein ähnliches Defizitprofil vorliegt wie bei den erkrankten Patienten selbst, wenn auch in geringerer Ausprägung.PubMedCrossRefGoogle Scholar
  7. Cardon LR, Smith SD, Fulker DW, Kimberling WJ, Pennington BF, DeFries JC (1994) Quantitative trait locus for reading disability on chromosome6. Science 266: 276–279PubMedCrossRefGoogle Scholar
  8. Clementz BA, Geyer MA, Braff DL (1998) Poor P50 suppression among schizophrenia patients and their first-degree biological relatives. Am J Psychiatry 155: 1691–1694PubMedGoogle Scholar
  9. Cloninger CR (2002) The discovery of susceptibility genes for mental disorders. Proc Natl Acad Sci USA 99: 13365–13367PubMedCrossRefGoogle Scholar
  10. Corder EH, Saunders AM, Strittmatter WJ et al. (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261: 921–923Google Scholar
  11. Cornblatt BA, Keilp JG (1994) Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophr Bull 20: 31–46PubMedCrossRefGoogle Scholar
  12. Corral MM, Holguin SR, Cadaveira F (1999) Neuropsychological characteristics in children of alcoholics: familial density. J Stud Alcohol 60: 509–513PubMedGoogle Scholar
  13. Cosway R, Byrne M, Clafferty R et al. (2000) Neu ropsychological change in young people at high risk for schizophrenia: results from the first two neuropsychological assessments of the Edinburgh High Risk Study. Psychol Med 30: 1111–1121PubMedCrossRefGoogle Scholar
  14. Curtis CE, Calkins ME, Grove WM, Feil KJ, Iacono WG (2001) Saccadic disinhibition in patients with acute and remitted schizophrenia and their first-degree biological relatives. Am J Psychiatry 158: 100–106PubMedCrossRefGoogle Scholar
  15. Davidson M, Reichenberg A, Rabinowitz J, Weiser M, Kaplan Z, Mark M (1999) Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry 156: 1328–1335PubMedGoogle Scholar
  16. Davies N, Russell A, Jones P, Murray RM (1998) Which characteristics of schizophrenia predate psychosis? J Psychiatr Res 32: 121–131PubMedCrossRefGoogle Scholar
  17. Dujardin K, Duhamel A, Becquet E, Grunberg C, Defebvre L, Destee A (1999) Neuropsychological abnormalities in first degree relatives of patients with familial Parkinson’s disease. J Neurol Neurosurg Psychiatry 67: 323–328PubMedCrossRefGoogle Scholar
  18. Egan MF, Goldberg TE, Kolachana BS et al. (2001) Effect of COMT Val 108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 98: 6917–6922PubMedCrossRefGoogle Scholar
  19. Erlenmeyer-Kimling L (2000) Neurobehavioral deficits in offspring of schizophrenic parents: Liability indicators and predictors of illness. Am J Med Genet 97: 65–71PubMedCrossRefGoogle Scholar
  20. Faraone SV, Seidman U, Kremen WS, Pepple JR, Lyons MJ, Tsuang MT (1995) Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a diagnostic efficiency analysis. J Abnorm Psycho) 104: 286–304CrossRefGoogle Scholar
  21. Faraone SV, Seidman U, Kremen WS, Toomey R, Pepple JR, Tsuang MT (1999) Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: a 4-year follow-up study. J Abnorm Psycho) 108: 176–181CrossRefGoogle Scholar
  22. Faraone SV, Seidman U, Kremen WS, Toomey R, Pepple JR, Tsuang MT (2000) Neuropsychologic functioning among the nonpsychotic relatives of schizophrenic patients: the effect of genetic loading. Biol Psychiatry 48: 120–126PubMedCrossRefGoogle Scholar
  23. Faraone SV, Seidman U, Kremen WS, Toomey R, Pepple JR, Tsuang MT (2000) Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: The effect of genetic loading. Biol Psychiatry 48: 120–126PubMedCrossRefGoogle Scholar
  24. Frangou S, Sharma T, Alarcon G, Sigmudsson T, Takei N, Binnie C, Murray RM (1997) The Maudsley Family Study, II: Endogenous event-related potentials in familial schizophrenia. Schizophr Res 23: 45–53PubMedCrossRefGoogle Scholar
  25. Franke P, Maier W, Hardt J, Hain C (1993) Cognitive functioning and anhedonia in subjects at risk for schizophrenia. Schizophr Res 10: 77–84PubMedCrossRefGoogle Scholar
  26. Franke P, Maier W, Hardt J, Hain C, Cornblatt BA (1994) Attentional abilities and measures of schizotypy: their variation and covariation in schizophrenic patients, their siblings, and normal control subjects. Psychiatry Res 54: 259–272PubMedCrossRefGoogle Scholar
  27. Freedman R, Coon H, Myles-Worsley M et al. (1997) Linkage of a neurophysiological deficit in schizophrenia to a chromosome15 locus. Proc Natl Acad Sci USA 94: 587–592PubMedCrossRefGoogle Scholar
  28. Garland MA, Parsons OA, Nixon SJ (1993) Visual-spatial learning in nonalcoholic young adults with and those without a family history of alcoholism. J Stud Alcohol 54: 219–224PubMedGoogle Scholar
  29. Giancola PR, Martin CS, Tarter RE, Pelham WE, Moss HB (1996) Executive cognitive functioning and aggressive behavior in preadolescent boys at high risk for substance abuse/ dependence. J Stud Alcohol 57: 352–359PubMedGoogle Scholar
  30. Gillen R, Hesselbrock V (1992) Cognitive functioning, ASP, and family history of alcoholism in young men at risk for alcoholism. Alcohol Clin Exp Res 16: 206–214PubMedCrossRefGoogle Scholar
  31. Gilvarry CM, Russell A, Hemsley D, Murray RM (2001) Neuro-psychological performance and spectrum personality traits in the relatives of patients with schizophrenia and affective psychosis. Psychiatry Res 101: 89–100PubMedCrossRefGoogle Scholar
  32. Gottesman I, Gould T (2003) The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry 160: 636–649PubMedCrossRefGoogle Scholar
  33. Gourovitch ML, Torrey EF, Gold JM, Randolph C, Weinberger DR, Goldberg TE (1999) Neuropsychological performance of monozygotic twins discordant for bipolar disorder. Biol Psychiatry 45: 639–646PubMedCrossRefGoogle Scholar
  34. Gray JM, Young AW, Barker WA, Curtis A, Gibson D (1997) Impaired recognition of disgust in Huntington’s disease gene carriers. Brain 120: 2029–2038. Eine sehr gute theoriegeleitete Arbeit, die eine selektive Störung bei der Diskrimination des Ekel-Ausdrucks bei noch nicht erkrankten Huntington-Genträgern beschreibt. Die Arbeit belegt indirekt auch die Rolle der Basalganglien spezifisch für die Verabeitung Ekel-assoziierter Reize.PubMedCrossRefGoogle Scholar
  35. Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia? Am J Psychiatry 153: 321–330PubMedGoogle Scholar
  36. Guidotti A, Auta J, Davis JM et al. (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD 67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 57: 1061–1069PubMedCrossRefGoogle Scholar
  37. Hahn-Barma V, Deweer B, Durr A et al. (1998) Are cognitive changes the first symptoms of Huntington’s disease? A study of gene carriers. J Neurol Neurosurg Psychiatry 64: 172–177PubMedCrossRefGoogle Scholar
  38. Hallmayer JF, Jablensky A, Michie P et al. (2003) Linkage analysis of candidate regions using a composite neurocognitive phenotype correlated with schizophrenia. Mol Psychiatry 8: 511–523PubMedCrossRefGoogle Scholar
  39. Happe F, Briskman J, Frith U (2001) Exploring the cognitive phenotype of autism: weak »central coherence« in parents and siblings of children with autism: I. Experimental tests. J Child Psycho) Psychiatry 42: 299–307. Die Autoren untersuchten einen »kognitiver Phänotyp« des Autismus - die Neigung, stärker auf Details als auf das Ganze zu achten — bei Verwandten von autistischen Patienten. Dieser kognitive Stil führt unter bestimmten Randbedingungen (z. B. bei der Suche nach versteckten Figuren in einer Zeichnung) zu besseren Leistungen. Tatsächlich wiesen Vätern von Autisten in mehreren Aufgaben eine stärker Detail-orientierte Verarbeitung auf als Eltern dyslektischer Kinder.CrossRefGoogle Scholar
  40. Harris JG, Adler LE, Young DA et al. (1996) Neuropsychological dysfunction in parents of schizophrenics. Schizophr Res 20: 253–260PubMedCrossRefGoogle Scholar
  41. Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122: 593–624PubMedCrossRefGoogle Scholar
  42. Heinrichs RW, Zakzanis KK (1998) Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 12: 426–445PubMedCrossRefGoogle Scholar
  43. Helkala EL, Koivisto K, Hanninen T et al. (1996) Memory functions in human subjects with different apolipoprotein E phenotypes during a 3-year population-based follow-up study. Neurosci Lett 204: 177–180PubMedCrossRefGoogle Scholar
  44. Henry JC, Amelsvoort T van, Morris RG, Owen MJ, Murphy DG, Murphy KC (2002) An investigation of the neuropsychological profile in adults with velo-cardio-facial syndrome (VCFS). Neuropsychologia 40: 471–478PubMedCrossRefGoogle Scholar
  45. Holzman PS, Solomon CM, Levin S, Waternaux CS (1984) Pursuit eye movement dysfunctions in schizophrenia. Family evidence for specificity. Arch Gen Psychiatry 41: 136–139PubMedCrossRefGoogle Scholar
  46. Hughes C, Leboyer M, Bouvard M (1997) Executive function in parents of children with autism. Psychol Med 27: 209–220PubMedCrossRefGoogle Scholar
  47. Johnson KA, Lopera F, Jones K et al. (2001) Presenilin-1-associated abnormalities in regional cerebral perfusion. Neurology 56: 1545–1551PubMedCrossRefGoogle Scholar
  48. Johnstone EC, Cosway R, Lawrie SM (2002) Distinguishing characteristics of subjects with good and poor early outcome in the Edingburgh High-Risk Study. Br J Psychiatry 43: 526–29Google Scholar
  49. Joober R, Gauthier J, Lal S et al. (2002) Catechol-O-methyltransferase Val-108/158-Met gene variants associated with performance on the Wisconsin Card Sorting Test. Arch Gen Psychiatry 59: 662–663PubMedCrossRefGoogle Scholar
  50. Keri S, Kelemen O, Benedek G, Janka Z (2001) Different trait markers for schizophrenia and bipolar disorder: a neuro-cognitive approach. Psycho) Med 31: 915–922Google Scholar
  51. Kis B, Heberlein I, Hagenah J, Jacobs H, Klein C, Vieregge P (2000) Neuropsychological abnormalities in first degree relatives of patients with familial Parkinson’s disease. J Neurol Neurosurg Psychiatry 69: 838PubMedCrossRefGoogle Scholar
  52. Kremen WS, Seidman U, Pepple JR, Lyons MJ, Tsuang MT, Faraone SV (1994) Neuropsychological risk indicators for schizophrenia: a review of family studies. Schizophr Bull 20: 103–119PubMedCrossRefGoogle Scholar
  53. Kremen WS, Faraone SV, Seidman U, Pepple JR, Tsuang MT (1998) Neuropsychological risk indicators for schizophrenia: a preliminary study of female relatives of schizophrenic and bipolar probands. Psychiatry Res 79: 227–240PubMedCrossRefGoogle Scholar
  54. La Rue A, O’Hara R, Matsuyama SS, Jarvik LE (1995) Cognitive changes in young-old adults: effect of family history of dementia. J Clin Exp Neuropsychol 17: 65–70PubMedCrossRefGoogle Scholar
  55. Lautenschlager N, Kurz A, Muller U (1999) Erbliche Ursachen und Risikofaktoren der Alzheimer-Krankheit. Nervenarzt 70: 195–205PubMedCrossRefGoogle Scholar
  56. Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet I (1998) Psychiatric genetics: search for phenotypes. Trends Neurosci 21: 102–105PubMedCrossRefGoogle Scholar
  57. Maier W (1998) Genetische Faktoren. In: Baumann U, Perrez M (Hrsg) Lehrbuch Klinische Psychologie — Psychotherapie. Huber, Bern. Ein guter Überblick über die Methoden und Ergebnisse genetisch-epidemiologischer und molekulargenetischer Studien von psychischen Erkrankungen.Google Scholar
  58. Maier W, Propping P (1991) Die familiäre Häufung psychischer Störungen und die Konsequenzen für die psychiatrische Diagnostik. Nervenarzt 62: 398–407PubMedGoogle Scholar
  59. Malhotra AK, Kestler U, Mazzanti C, Bates JA, Goldberg T, Goldman D (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 159: 652–654PubMedCrossRefGoogle Scholar
  60. Matsushita S, Kato M, Muramatsu T, Higuchi S (2000) Alcohol and aldehyde dehydrogenase genotypes in Korsakoff syndrome. Alcohol Clin Exp Res 24: 337–340PubMedCrossRefGoogle Scholar
  61. McGuffin P, Riley B, Plomin R (2001) Genomics and behavior: Toward behavioral genomics. Science 291: 1232–1249PubMedCrossRefGoogle Scholar
  62. Michie PT, Innes-Brown H, Todd J, Jablensky AV (2002) Duration mismatch negativity in biological relatives of patients with schizophrenia spectrum disorders. Biol Psychiatry 52: 749–758PubMedCrossRefGoogle Scholar
  63. Montgomery EB Jr, Baker KB, Lyons K, Koller WC (1999) Abnormal performance on the PD test battery by asymptomatic first-degree relatives. Neurology 52: 757–762PubMedCrossRefGoogle Scholar
  64. Montgomery EB Jr, Lyons K, Koller WC (2000) Early detection of probable idiopathic Parkinson’s disease: Il. A prospective application of a diagnostic test battery. Mov Disord 15: 474–478PubMedCrossRefGoogle Scholar
  65. Moritz S, Fricke S, Wagner M, Hand I (2001) Further evidence for delayed alternation deficits in obsessive-compulsive disorder. J Nerv Ment Dis 189: 562–564PubMedCrossRefGoogle Scholar
  66. Murphy KC, Owen MJ (2001) Velo-cardio-facial syndrome: a model for understanding the genetics and pathogenesis of schizophrenia. Br J Psychiatry 179: 397–402. Der Artikel weist auf die bis vor kurzem unbekannte deutliche Häufung psychotischer Erkrankungen bei einem Syndrom mit bekannter genetischer Ursache hin. Er verdeutlicht exemplarisch die Forschungsstrategie, bei genetisch bereits aufgeklärten Erkrankungen außerhalb des eigentlichen »psychiatrischen« Krankheitspektrums nach bestimmten psychiatrischen Symptomen zu suchen, um deren genetische Basis zu verstehen.PubMedCrossRefGoogle Scholar
  67. Myles-Worsley M, Coon H et al. (1999) Linkage of a composite inhibitory phenotype to a chromosome 22q locus in eight Utah families. Am J Med Genet 88: 544–550PubMedCrossRefGoogle Scholar
  68. Nestadt G, Samuels J, Riddle M et al. (2000) A family study of obsessive-compulsive disorder. Arch Gen Psychiatry 57: 358–363PubMedCrossRefGoogle Scholar
  69. Noble EP, Berman SM, Ozkaragoz TZ, Ritchie T (1994) Prolonged P300 latency in children with the D2 dopamine receptor Al allele. Am J Hum Genet 54: 658–668PubMedGoogle Scholar
  70. Nuechterlein KH (1983) Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. J Abnorm Psycho) 92: 4–28CrossRefGoogle Scholar
  71. Ozkaragoz T, Satz P, Noble EP (1997) Neuropsychological functioning in sons of active alcoholic, recovering alcoholic, and social drinking fathers. Alcohol 14: 31–37PubMedCrossRefGoogle Scholar
  72. Ozonoff S, Rogers SJ, Farnham JM, Pennington BF (1993) Can standard measures identify subclinical markers of autism? J Autism Dev Disord 23: 429–441PubMedCrossRefGoogle Scholar
  73. Park S, Holzman PS, Goldman-Rakic PS (1995) Spatial working memory deficits in the relatives of schizophrenic patients. Arch Gen Psychiatry 52: 821–828PubMedCrossRefGoogle Scholar
  74. Persico AM, D’Agruma L, Maiorano N et al. (2001) Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 6: 150–159PubMedCrossRefGoogle Scholar
  75. Petrill SA, Plomin R, McClearn GE et al. (1997) No association between general cognitive ability and the Al allele of the D2 dopamine receptor gene. Behav Genet 27: 29–31PubMedCrossRefGoogle Scholar
  76. Phillips ML, Young AW, Senior C et al. (1997) A specific neural substrate for perceiving facial expressions of disgust. Nature 389: 495–498.PubMedCrossRefGoogle Scholar
  77. Pierson A, Jouvent R, Quintin P, Perez-Diaz F, Leboyer M (2000) Information processing deficits in relatives of manic depressive patients. Psycho) Med 30: 545–555CrossRefGoogle Scholar
  78. Plomin R, DeFries JC, McClearn GE, McGuffin P (2001) Behavioral Genetics, 4th edn. Worth, New YorkGoogle Scholar
  79. Purcell R, Maruff P, Kyrios M, Pantelis C (1998) Neuropsychological deficits in obsessive-compulsive disorder: a comparison with unipolar depression, panic disorder, and normal controls. Arch Gen Psychiatry 55: 415–423PubMedCrossRefGoogle Scholar
  80. Roitman SE, Cornblatt BA, Bergman A et al. (1997) Attentional functioning in schizotypal personality disorder. Am J Psychiatry 154: 655–660PubMedGoogle Scholar
  81. Ross RG, Harris JG, Olincy A, Radant A, Adler LE, Freedman R (1998a) Familial transmission of two independent saccadic abnormalities in schizophrenia. Schizophr Res 30: 59–70PubMedCrossRefGoogle Scholar
  82. Ross RG, Olincy A, Harris JG, Radant A, Adler LE, Freedman R (1998b) Anticipatory saccades during smooth pursuit eye movements and familial transmission of schizophrenia. Biol Psychiatry 44: 690–697PubMedCrossRefGoogle Scholar
  83. Savage CR, Baer L, Keuthen NJ, Brown HD, Rauch SL, Jenike MA (1999) Organizational strategies mediate nonverbal memory impairment in obsessive-compulsive disorder. Biol Psychiatry 45: 905–916PubMedCrossRefGoogle Scholar
  84. Schröder C, Maier W, Wagner M (2002) A meta-analysis of neurocognitive deficits in relatives of patients with schizophrenia. Schizophr Res 53: 126–127Google Scholar
  85. Seidman U, Biederman J, Monuteaux MC, Weber W, Faraone SV (2000) Neuropsychological functioning in nonreferred siblings of children with attention deficit/hyperactivity disorder. J Abnorm Psycho) 109: 252–265CrossRefGoogle Scholar
  86. Seidman U, Faraone SV, Goldstein JM et al. (2002) Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 59: 839–849. Eine neuere Arbeit aus der großen Harvard-Brockton-Familienstudie zur Schizophrenie (weitere Publikationen hierzu z. B. von Kremen und Faraone), die bei nichterkrankten Verwandten ersten Grades von schizophrenen Patienten eine Volumenminderung im linken Hippokampus, auch wie bei den Patienten selbst, fand. Diese Volumenminderung war besonders bei Angehörigen aus Familien mit mehreren Krankheitsfällen ausgeprägt, korrelierte mit der Leistungsminderung im deklarativen Gedächtnis und könnte Resultat einer, möglicherweise genetisch mitbedingten, Störung der Hirnentwicklung sein, die einen Vulnerabilitätsfaktor für die Entwicklung der Krankheit darstellt.PubMedCrossRefGoogle Scholar
  87. Sharma T, Lancaster E, Sigmundsson T et al. (1999) Lack of normal pattern of cerebral asymmetry in familial schizophrenic patients and their relatives — The Maudsley Family Study. Schizophr Res 40: 111–120PubMedCrossRefGoogle Scholar
  88. Shenton ME, Solovay MR, Holzman PS, Coleman M, Gale Hi (1989) Thought disorder in the relatives of psychotic patients. Arch Gen Psychiatry 46: 897–901PubMedCrossRefGoogle Scholar
  89. Shifman S, Bronstein M, Sternfeld M et al. (2002) A highly significant association between a COMT Haplotype and Schizophrenia. Am J Hum Genet 71: 1296–1302PubMedCrossRefGoogle Scholar
  90. Stratta P, Daneluzzo E, Mattei P, Bustini M, Casacchia M, Rossi A (1997) No deficit in Wisconsin Card Sorting Test performance of schizophrenic patients’ first-degree relatives. Schizophr Res 26: 147–151PubMedCrossRefGoogle Scholar
  91. van Os J, Jones P, Lewis G, Wadsworth M, Murray R (1997) Developmental precursors of affective illness in a general population birth cohort. Arch Gen Psychiatry 54: 625–631CrossRefGoogle Scholar
  92. Wagner M, Frommann I, Schröder C, Matuschek E, Pukrop R (2002) Neurocognitive performance in presumed prodromal stages of schizophrenia. Schizophr Res 53: 35–36Google Scholar
  93. Weisbrod M, Hill H, Niethammer R, Sauer H (1999) Genetic influence on auditory information processing in schizophrenia: P300 in monozygotic twins. Biol Psychiatry 46: 721–725PubMedCrossRefGoogle Scholar
  94. Zakzanis KK, Leach L, Kaplan EF (1999) Neuropsychological differential diagnosis. Swets & Zeitlinger, Lisse/NLGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Wagner

There are no affiliations available

Personalised recommendations