Nanoinspection of Dielectric and Polarization Properties at Inner and Outer Interfaces in PZT Thin Films

  • L. M. Eng
  • S. Grafström
  • C. Loppacher
  • X. M. Lu
  • F. Schlaphof
  • K. Franke
  • G. Suchaneck
  • G. Gerlach
Part of the NanoScience and Technology book series (NANO)


We report on novel approaches using scanning force methods [i.e. piezoresponse force microscopy (PFM), Kelvin probe force microscopy (KPFM) and pull-off force spectroscopy (PFS)] in order to deduce the local dielectric and polarization properties of PZT thin films both at outer and inner interfaces with < 50 nm lateral resolution. We show that the polarization profile into the depth of the PZT sample varies dramatically being built up at the bottom Pt electrode over a transition layer of more than 200 nm in thickness. Also this interfacial area shows a different relaxation behavior upon switching. The results are explained both in the view of negatively charged defects pinned at the PZT/Pt interface as well as the possible variation in the local dielectric properties across the film thickness. Investigating the latter made the quantitative deduction of values such as the effective dielectric polarization P z ,the deposited charge density σ, and the surface dielectric constant ε surface in thin ferroelectric PZT films necessary. We illustrate that such measurements in fact are possible on the nanometer scale revealing quantitative data when combining PFM and PFS.


Piezoresponse Force Microscopy Kelvin Probe Force Microscopy Outer Interface Inverse Piezoelectric Effect Local Dielectric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colla EL, D V Taylor, A K Tagantsev, and N Setter (1998) Appl Phys Lett 72: 2478Google Scholar
  2. 2.
    Lee JJ, Thio CL, and Desu SB (1995) J Appl Phys 78: 5073ADSCrossRefGoogle Scholar
  3. 3.
    Alexe M, Harnagea C, Hesse D, and Gösele U (2001) Appl Phys Lett 79: 242ADSCrossRefGoogle Scholar
  4. 4.
    Lin CH, Friddle PA, Ma CH, Daga A, and Chen H (2001) J Appl Phys 90: 1509Google Scholar
  5. 5.
    Cillessen JFM, Prins MWJ, and Wolf RM (1997)J Appl Phys 81: 2777Google Scholar
  6. 6.
    Jiang JC, Tian W, Pan XQ, Gan Q, and Eom CB (1998) Appl Phys Lett 72: 2963Google Scholar
  7. 7.
    Lee HN, Senz S, Zakharov ND, Harnagea C, Pignolet A, Hesse D, and Gösele U (2000) Appl Phys Lett 77: 3260ADSCrossRefGoogle Scholar
  8. 8.
    Eng LM, Bammerlin M, Loppacher Ch, Guggisberg M, Bennewitz R, Meyer E, and Güntherodt H-J (1999) Surf Interface Analysis 27: 422CrossRefGoogle Scholar
  9. 9.
    Eng LM, Bammerlin M, Loppacher Ch, Guggisberg M, Bennewitz R, Lüthi R, Meyer E, and Güntherodt H-J (1999) Appl Surf Sci 140: 253ADSCrossRefGoogle Scholar
  10. 10.
    Loppacher Ch, Schlaphof F, Schneider S, Zerweck U, Grafström S, Eng LM, Roelofs A, and Waser R (2003) Surface Science, in pressGoogle Scholar
  11. 11.
    Eng LM (1999) Nanotechnology 10: 405ADSCrossRefGoogle Scholar
  12. 12.
    Eng LM, Rosenman G, Skliar A, Oron M, Katz M, and Eger D (1998) J Appl Phys 83: 5973ADSCrossRefGoogle Scholar
  13. 13.
    Eng LM, Abplanalp M, Günter P, and Güntherodt H-J (1998) J de Physique IV 8: 199–201CrossRefGoogle Scholar
  14. 14.
    Eng LM, Abplanalp M, and Günter P (1998) Appl Phys A66: S679ADSCrossRefGoogle Scholar
  15. 15.
    Abplanalp M, Eng LM, and Günter P (1998) Appl Phys A66: S231ADSCrossRefGoogle Scholar
  16. 16.
    Tarrach G, Lagos L, Hermans Z, Loppacher Ch, Schlaphof F, and Eng LM (2001) Appl Phys Lett 79: 3152ADSCrossRefGoogle Scholar
  17. 17.
    Eng LM, Güntherodt H-J, Schneider GA, Köpke U, and Munoz Saldana J (1999) Appl Phys Lett 74: 233ADSCrossRefGoogle Scholar
  18. 18.
    Munoz-Saldana J, Schneider GA, and Eng LM (2001) Surf Sci 480: L402CrossRefGoogle Scholar
  19. 19.
    Munoz Saldana J, Eng LM, and Schneider GA (2000) Sciencia UANL 3: 389Google Scholar
  20. 20.
    Roelofs A, Pertsev NA, Waser R, Schlaphof F, Eng LM, Ganpule C, and Ramesh R (2002) Appl Phys Lett 80: 1424ADSCrossRefGoogle Scholar
  21. 21.
    Roelofs A, Schlaphof F, Trogisch, Böttger U, Waser R, and Eng LM (2000) Appl Phys Lett 77: 3444ADSCrossRefGoogle Scholar
  22. 22.
    Ganpule CS, Nagarajan V, Hill BK, Roytburd AL, Williams ED, Ramesh R, Alpay SP, Roelofs A, Waser R, and Eng LM (2002) J Appl Phys 91: 1477Google Scholar
  23. 23.
    Lu XM, Schlaphof F, Loppacher C, Grafström S, Eng LM, Suchaneck G, and Gerlach G (2002) Appl Phys Lett 81: 3215ADSCrossRefGoogle Scholar
  24. 24.
    Franke K and Eng LM (2003) J Appl Phys, submittedGoogle Scholar
  25. 25.
    Eng LM, Schlaphof F, Trogisch S, Roelofs A, and Waser R (2001) Ferroelectrics 251: 11CrossRefGoogle Scholar
  26. 26.
    Franke K (1995) Ferroelectrics Lett 19: 35CrossRefGoogle Scholar
  27. 27.
    Cao W and Randall C (1993) Solid State Comm 86: 435ADSCrossRefGoogle Scholar
  28. 28.
    Franke K, Hülz H, Weihnacht M, Hässler W, and Besold J (1995) Ferroelectrics 172: 397CrossRefGoogle Scholar
  29. 29.
    Franke K, Hülz H, and Seifert S (1997) Ferroelectrics Lett 23: 1CrossRefGoogle Scholar
  30. 30.
    Guggisberg M, Bammerlin M, Loppacher Ch, Pfeiffer O, Abdurixit A, Barvich V, Bennewitz R, Baratoff A, Meyer E, and Güntherodt H-J (2000) Phys Rev B 61: 1 1151Google Scholar
  31. 31.
    Guggisberg M, Pfeiffer O, Schär S, Barvich V, Bammerlin M, Loppacher Ch, Bennewitz R, Baratoff A, and Meyer E (2000) Appl Phys A 72: S19ADSCrossRefGoogle Scholar
  32. 32.
    Eng LM, Grafström S, Loppacher Ch, Schlaphof F, Trogisch S, Roelofs A, and Waser R (2001) In: Kramer B (ed) Advances in Solid State Physics. Springer, Berlin, Vol 41:287–298Google Scholar
  33. 33.
    Suchaneck G, Lin W-M, Koehler R, Sandner T, Gerlach G, Krawietz R, Pompe W, Deineka A, and Jastrabik L (2001) Proc 6th Int Symp Sputtering Plasma Processing, p. 341Google Scholar
  34. 34.
    Köhler R, Suchaneck G, Padmini P, Padmini P, Sandner T, Gerlach G, and Hoffmann G (1999) Ferroelectrics 225: 57CrossRefGoogle Scholar
  35. 35.
    Bruchhaus R, Huber H, Pitzer D, and Wersing W (1992) Ferroelectrics 127: 137CrossRefGoogle Scholar
  36. 36.
    Kalinin SV and Bonnell DA (2001) Phys Rev B 63: 125411Google Scholar
  37. 37.
    Jacobs HO, Leuchtmann P, Homan OJ, and Stemmer A (1998) J Appl Phys 84: 1168ADSCrossRefGoogle Scholar
  38. 38.
    Tagantsev AK and Stolichnov IA (1999) Appl Phys Lett 74: 1326ADSCrossRefGoogle Scholar
  39. 39.
    lijima K, Nagano N, Takeuchi T, Ueda I, Tomita Y, Takayama R (1993) Mater Res Symp Proc 310: 455CrossRefGoogle Scholar
  40. 40.
    Suchaneck G, Gerlach G, Poplavko Yu, Kosarev AI, and Andronov AN (2001) Mat Res Soc Symp Proc 655: CC771Google Scholar
  41. 41.
    Scott JF (1999) Jpn J Appl Phys Part 1 38: 2272ADSCrossRefGoogle Scholar
  42. 42.
    Deneika A, Glikchuk M, Jastrabik L, Sushaneck G, and Gerlach G (1999) Phys. Stat. Sol. A 175: 443Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • L. M. Eng
  • S. Grafström
  • C. Loppacher
  • X. M. Lu
  • F. Schlaphof
  • K. Franke
  • G. Suchaneck
  • G. Gerlach

There are no affiliations available

Personalised recommendations