Challenges in the Analysis of the Local Piezoelectric Response

  • C. Harnagea
  • A. Pignolet
Part of the NanoScience and Technology book series (NANO)


The piezoresponse technique is based on the detection of local vibrations of a cantilever induced by a probing AC signal applied between the conductive tip of a scanning force microscope (SFM) and the bottom electrode of a ferroelectric sample. The cantilever vibrations are converted into an electrical signal by the position sensitive detector of the SFM and extracted from the global deflection signal using a standard lock-in technique. This electrical signal representing the cantilever vibrations is further referred to as the piezoresponse signal (PRS), for reasons that will be explained later.


Spontaneous Polarization Bottom Electrode Piezoelectric Coefficient Ferroelectric Domain Scanning Force Microscope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Güthner P, Dransfeld K (1992) Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61: 1137–1139Google Scholar
  2. 2.
    Birk H, Glatz-Reichenbach J, Jie L, Schreck E, Dransfeld K (1991) The local piezoelectric activity of thin polymer films observed by scanning tunneling microscopy. J. Vac. Sci. Technol. B 9 pt. 2: 1162–1165CrossRefGoogle Scholar
  3. 3.
    Franke K, Weihnacht M (1995) Evaluation of electrically polar substances by electric scanning force microscopy: 1. Measurement signals due to Maxwell stress. Ferroelectric Lett. 19: 25–33; Franke K (1995) Evaluation of electrically polar substances by electric scanning force microscopy: 2. Measurement signals due to electromechanical effects. Ferroelectric Lett. 19: 35–43Google Scholar
  4. 4.
    Lee K, Shin H, Moon WK, Jeon JU, Pak YE (1999) Detection mechanism of spontaneous polarization in ferroelectric thin films using electrostatic force microscopy. Jpn. J. Appl. Phys. 38 (Part 2, 3A): L264 — L266ADSCrossRefGoogle Scholar
  5. 5.
    Hong S, Woo J, Shin H, Jeon JU, Pak YE, Colla EL, Setter N, Kim E, No K, (2001) Principle of ferroelectric domain imaging using atomic force microscope. J. Appl. Phys. 89: 1377–1386Google Scholar
  6. 6.
    Hong JW, Noh KH, Park SI, Kwun SI, Khim ZG (1998) Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy. Phys. Rev. B 58: 5078–5084Google Scholar
  7. 7.
    Hong JW, Park SI, Khim ZG (1999) Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope. Rev. Sci. Instrum. 70: 1735–1739Google Scholar
  8. 8.
    S. V. Kalinin, D. A. Bonnell (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65: 125408–11Google Scholar
  9. 9.
    S. V. Kalinin, D. A. Bonnell, (2003) This book, Chap. 1Google Scholar
  10. 10.
    Abplanalp M, Eng LM, Günter P (1998) Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl. Phys. A-Mater 66: S231 — S234ADSCrossRefGoogle Scholar
  11. 11.
    Matthias B, von Hippel A (1948) Domain Structure and Dielectric Response of Barium Titanate Single Crystals. Phys. Rev 73: 1378–1384ADSCrossRefGoogle Scholar
  12. 12.
    Hooton JA, Merz WJ (1955) Etch Patterns and Ferroelectric Domains in BaTiO3 Single Crystals. Phys. Rev 98, 409–413Google Scholar
  13. 13.
    Eng LM, Abplanalp M, Günter P, Güntherodt H-J (1998) Nanoscale domain switching and 3-dimensional mapping of ferroelectric domains by scanning force microscopy. J. de Physique IV 8: 201–204Google Scholar
  14. 14.
    Christman JA, Woolcott RR Jr., Kingon AI, Nemanich RJ (1998) Piezoelectric measurements with atomic force microscopy. Appl. Phys. Lett. 73: 3851–3853Google Scholar
  15. 15.
    Ganpule CS, Stanishevsky A, Aggarwal S, Melngailis J, Williams E, Ramesh R, Joshi V, de Araujo CP (1999) Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films. Appl. Phys. Lett. 75: 3874–3876Google Scholar
  16. 16.
    W.G. Cady (1964) Piezoelectricity. Dover Publications Inc., New YorkGoogle Scholar
  17. 17.
    Sorge G, Beige H (1975) Determination of the piezocoefficients d m, from the frequency dependence of the dielectric permittivity. Experimentelle Technik der Physik 23: 489–493.Google Scholar
  18. 18.
    Beige H, Sorge G, Schmidt G, Glogarova M (1978) Resonance method for determining small piezoelectric constants. Experimentelle Technik der Physik 26: 297–302Google Scholar
  19. 19.
    D. Damjanovic (1998) Ferroelectric, dielectric and piezoelectric properties of ferro-electric thin films and ceramics. Rep. Prog. Phys. 61: 1267–1324Google Scholar
  20. 20.
    Harnagea C, Pignolet A, Alexe M, Hesse D, Gösele U (2000) Quantitative ferroelectric characterization of single submicron grains in Bi-layered perovskite thin films. Appl. Phys. A, Mater. Sci. Process. 70: 261–267Google Scholar
  21. 21.
    Kholkin AL, Colla EL, Tagantsev AK, Taylor DV, Setter N (1996) Fatigue of piezoelectric properties in Pb(Zr,Ti)O3 films Appl. Phys. Lett. 68: 2577–2579Google Scholar
  22. 22.
    Hidaka T, Maruyama T, Saitoh M, Mikoshiba N, Shimizu M, Shiosaki T, Wills LA, Hiskes R, Dicarolis SA, Amano J (1996) Formation and observation of 50 nm polarized domains in PbZrt_XTiXO3 thin film using scanning probe microscope. Appl. Phys. Lett. 68: 2358–2359Google Scholar
  23. 23.
    Zavala G, Fendler JH, Trolier-McKinstry S (1997) Characterization of ferroelectric lead zirconate titanate films by scanning force microscopy. J. Appl. Phys. 81: 74807491Google Scholar
  24. 24.
    Eng LM (1999) Nanoscale domain engineering and characterization of ferroelectric domains. Nanotechnology 10: 405–411ADSCrossRefGoogle Scholar
  25. 25.
    Alemany C, Jimenez R, Revilla J, Mendiola J, and Calzada ML (1999). J. Phys. D, Appl. Phys. 32: L79 — L82ADSCrossRefGoogle Scholar
  26. 26.
    Devonshire AF (1951) Theory of barium titanate — Part H. Philos. Mag. 42: 10651079. See also Devonshire AF (1949) Theory of barium titanate — Part I. Philos. Mag. 40: 1040–1063Google Scholar
  27. 27.
    Gruverman A, Tanaka M (2001) Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale. J. Appl. Phys. 89: 1836–1843Google Scholar
  28. 28.
    Nagarajan V, Stanishevsky A, Chen L, Zhao T, Liu B-T, Meingailis J, Roytburd AL, Ramesh R, Finder J, Yu Z, Droopad R, Eisenbeiser K (2002) Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si. Appl. Phys. Lett. 81: 4215–4217Google Scholar
  29. 29.
    Nye JF (1985) Physical Properties of Crystals, Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Du X, Belegundu U, Uchino K (1997) Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: theoretical expectation for thin films Jpn. J. Appl. Phys. 36, Part 1: 5580–5587Google Scholar
  31. 31.
    Harnagea C, Pignolet A, Alexe M, and Hesse D (2002) Piezoresponse scanning force microscopy: What quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films Integr. Ferroelectrics 44, 113–126Google Scholar
  32. 32.
    Du X-H, Wang Q-M, Belegundu U, Bhalla A, Uchino K (1999) Crystal orientation dependence of piezoelectric properties of single crystal barium titanate. Mater. Lett. 40, 109–113Google Scholar
  33. 33.
    Sa Neto A, Cross LE (1982) Electro-mechanical behaviour of single domain single crystals of bismuth titanate (Bi4Ti3O12). J. Mater. Sci. 17: 1409–1412Google Scholar
  34. 34.
    They found a discrepancy between the calculated and measured d33, so the experimental value was used for the piezoelectric coefficient along the c-axis.Google Scholar
  35. 35.
    Amin A, Haun MJ, Badger B, McKinstry H, and Cross LE (1985) A phenomenological Gibbs function for the single cell region of the PbZrO3:PbTiO3 solid solution system. Ferroelectrics 65: 107–130Google Scholar
  36. 36.
    Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J. Appl. Phys. 86: 2746–2750Google Scholar
  37. 37.
    For example, J.D. Jackson (1999) Classical Electrodynamics. Wiley, New YorkGoogle Scholar
  38. 38.
    Abplanalp M, Günter P (1998) Imaging of ferroelectric domains with sub micrometer resolution by scanning force microscopy. Proc. of 11`h IEEE-ISAF (Montreux, Aug. 24–27, 1998), IEEE Piscataway, NJ, Cat. No. 98CH36245: 423–426Google Scholar
  39. 39.
    Ganpule CS, Nagarajan V, Li H, Ogale AS, Steinhauer DE, Aggarwal S, Williams E, Ramesh R, De Wolf P (2000) Role of 90° domains in lead zirconate titanate thin films Appl. Phys. Lett. 77: 292–294Google Scholar
  40. 40.
    Ahn CH, Tybell T, Antognazza L, Char K, Hammond RH, Beasley MR, Fischer 0, Triscone J-M (1997) Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Tio,48)O3/SrRuO3 heterostructures. Science 276: 1100–1103Google Scholar
  41. 41.
    Franke K, Huelz H, Weihnacht M (1998) Stress-induced depolarization in PZT thin films, measured by means of electric force microscopy. Surf. Sci. 416: 59–67Google Scholar
  42. 42.
    Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67: 32813293Google Scholar
  43. 43.
    Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W (2000) Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38: 430–437CrossRefGoogle Scholar
  44. 44.
    Hamagea C, Alexe M, Hesse D, and Pignolet A (2002) Contact resonances in voltage-modulated force microscopy. Appl. Phys. Lett. 83: 338–340Google Scholar
  45. 45.
    Labardi M, Likodimos V, Allegrini M (2000) Force-microscopy contrast mechanisms in ferroelectric domain imaging. Phys. Rev. B 61: 14390–14398Google Scholar
  46. 46.
    Durkan C, Welland ME, Chu DP, Migliorato P (1999) Probing domains at the nano-meter scale in piezoelectric thin films. Phys. Rev. B 60: 16198–16204Google Scholar
  47. 47.
    Durkan C, Chu DP, Migliorato P, and Welland ME (2000) Investigations into local piezoelectric properties by atomic force microscopy. Appl. Phys. Lett. 76: 366–368Google Scholar
  48. 48.
    Harnagea C, Pignolet A, Alexe M, Satyalakshmi KM, Hesse D, Gösele U (1999) Nanoscale switching and domain structure in ferroelectric BaBi4Ti4O15. Jpn. J. Appl. Phys. 38: L1255 — L1257Google Scholar
  49. 49.
    Jaffe B, Cook WR, H. Jaffe (1971) Piezoelectric ceramics. Academic Press, London.Google Scholar
  50. 50.
    Dubois MA, Muralt P, Taylor DV, Hiboux St (1998) Which PZT thin films for piezoelectric microactuator applications, Integr. Ferroelectrics 22: 1055–1063Google Scholar
  51. 51.
    Gruverman A, Ikeda Y (1998) Characterization and control of domain structure in Sr2Bi2TaO9 thin films by scanning force microscopy. Jpn. J. Appl. Phys. 37: L939 — L941Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • C. Harnagea
  • A. Pignolet

There are no affiliations available

Personalised recommendations