Skip to main content

Electric Scanning Probe Imaging and Modification of Ferroelectric Surfaces

  • Chapter
Book cover Nanoscale Characterisation of Ferroelectric Materials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Recent progress in oxide electronic devices including microelectromechanical systems (MEMS), non-volatile ferroelectric memories (FeRAMs), and ferroelectric heterostructures necessitates an understanding of local ferroelectric properties on the nanometer level. This has motivated a number of studies of ferroelectric materials with various scanning probe microscopies (SPM) [l–3], many examples of which can be found in this text. The natures of the probe and contrast formation mechanisms in these techniques are vastly different; therefore, SPM images reflect different properties of ferroelectric surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gruverman A, Auciello O, and Tokumoto H (1998) Annu Rev Mat Sci 28: 101

    Article  ADS  Google Scholar 

  2. Eng LM, Grafstrom S, Loppacher C, Schlaphof F, Trogisch S, Roelofs A, and Waser R (2001) Adv in Solid State Physics 41: 287

    Article  ADS  Google Scholar 

  3. 3. Nanoscale Phenomena in Ferroelectric Thin Films,ed Seungbum Hong, to be published

    Google Scholar 

  4. Ganpule CS, Nagarjan V, Li H, Ogale AS, Steinhauer DE, Aggarwal S, Williams E, Ramesh R, and De Wolf P (2000) Appl Phys Lett 77: 292

    Article  ADS  Google Scholar 

  5. Gruverman A and Ikeda Y (1998) Jpn J Appl Phys 37: L939

    Article  ADS  Google Scholar 

  6. Hong S, Colla EL, Kim E, No K, Taylor DV, Tagantsev AK, Muralt P, and Setter N (1999) J Appl Phys 86: 607

    Article  ADS  Google Scholar 

  7. Colla EL, Hong S, Taylor DV, Tagantsev AK, Setter N, No K (1998) Appl Phys Lett 72: 2763

    Article  ADS  Google Scholar 

  8. Christman JA, Kim SH, Maiwa H, Maria JP, Rodriguez BJ, Kingon AI, and Nemanich RI (2000) J Appl Phys 87: 8031

    Article  ADS  Google Scholar 

  9. Electric Scanning Probe Imaging and Modification of Ferroelectric Surfaces

    Google Scholar 

  10. Takata K, Miki H, Kushida-Abdelghafar K, Torii K, and Fujisaki Y (1998) Appl Phys A 66: S441

    Article  ADS  Google Scholar 

  11. Gruverman A, Auciello O, Tokumoto H (1996) Appl Phys Lett 69: 3191

    Article  ADS  Google Scholar 

  12. Kalinin SV and Bonnell DA (2000) J Appl Phys 87: 3950

    Article  ADS  Google Scholar 

  13. Luo EZ, Xie Z, Xu JB, Wilson IH, and Zhao LH (2000) Phys Rev B 61: 203

    Article  ADS  Google Scholar 

  14. Likodimos V, Labardi M, and Allegrini M (2000) Phys Rev B 61: 14440

    Article  ADS  Google Scholar 

  15. Kalinin SV and Bonnell DA (2001) Appl Phys Lett 78: 1116

    Article  ADS  Google Scholar 

  16. Munoz-Saldana J, Schneider GA, and Eng LM (2001) Surf Sci 480: L402

    Article  Google Scholar 

  17. Alexe M, Gruverman A, Harnagea C, Zakharov, Pignolet A, Hesse D, and Scott JF (1999) Appl Phys Lett 75: 1158

    Google Scholar 

  18. Roytburd AL, Alpay SP, Nagarajan V, Ganpule CS, Aggarwal S, Williams ED, and Ramesh R (2000) Phys Rev Lett 85: 190

    Article  ADS  Google Scholar 

  19. Ganpule CS, Stanishevsky A, Aggarwal S, Meingailis J, Williams E, Ramesh R, Joshi V, and Paz de Araujo C (1999) Appl Phys Lett 75: 3874

    Google Scholar 

  20. Alexe M, Harnagea C, Hesse D, and Gosele U (1999) Appl Phys Lett 75: 1793

    Article  ADS  Google Scholar 

  21. Luthi R, Haefke H, Meyer K-P, Meyer E, Howald L, and Guntherodt H-J (1993) J Appl Phys 74: 7461

    Article  ADS  Google Scholar 

  22. Luthi R, Haefke H, Gutmannsbauer W, Meyer E, Howald, and Guntherodt H-J (1996) J Vac Sci Technol B 12: 2451

    Article  Google Scholar 

  23. Saurenbach F and Terris BD (1990) Appl Phys Lett 56: 1703

    Article  ADS  Google Scholar 

  24. Ohgami J, Sugawara Y, Morita S, Nakamura E and Ozaki T (1996) Jpn J Appl Phys A 35: 2734

    Article  ADS  Google Scholar 

  25. Eng LM, Fousek J and Gunter P (1997) Ferroelectrics 191: 211

    Article  Google Scholar 

  26. Fridkin VM (1980) Ferroelectric Semiconductors, Consultants Bureau, New York

    Google Scholar 

  27. Binnig G, Quate, and Gerber Ch (1986) Phys Rev Lett 56: 930

    Article  ADS  Google Scholar 

  28. DA Bonnell (ed) (2000) Scanning Probe Microscopy and Spectroscopy: Theory, Techniques and Applications. John Wiley, New York

    Google Scholar 

  29. Wiesendanger R (1994) Scanning Probe Microscopy and Spectroscopy - Methods and Applications. Cambridge University Press

    Google Scholar 

  30. Sarid D (1991) Scanning Force Microscopy. Oxford University Press, New York

    Google Scholar 

  31. Jona F, Shirane G (1993) Ferroelectric crystals. Dover

    Google Scholar 

  32. Chen XQ, Yamada H, Horiuchi T, Matsushige K, Watanabe S, Kawai M, and Weiss PS (1999) J Vac Sci Technol B 17: 1930

    Article  Google Scholar 

  33. Tybell T, Ahn CH, Antognazza L, and Triscone J-M (1998) Vide: Sci Tech Appl 289: 551

    Google Scholar 

  34. Kalinin SV and Bonnell DA (2001) Phys Rev B 63: 125411

    Google Scholar 

  35. Kalinin SV and Bonnell DA, In: Seungbum Hong (ed) Nanoscale Phenomena in Ferro-electric Thin Films. Kluwer, to be published

    Google Scholar 

  36. Kalinin SV, Johnson CY, and Bonnell DA (2002) J Appl Phys 91: 3816

    Article  ADS  Google Scholar 

  37. Bonnell DA (1998) Prog Surf Sci 57: 187

    Article  ADS  Google Scholar 

  38. Noguera C (2000) J Phys C 12: R367

    Google Scholar 

  39. Henrich VE and Cox PA (1994) The Surface Science of Metal Oxides. Cambridge University Press, Cambridge

    Google Scholar 

  40. Hu Z, Kalinin SV, and Bonnell DA, unpublished

    Google Scholar 

  41. Durkan C, Welland ME, Chu DP, and Migliorato P (1999) Phys Rev B 60: 16198

    Article  ADS  Google Scholar 

  42. Durkan C, Chu DP, Migliorato P, and Welland ME (2000) Appl Phys Lett 76: 366

    Article  ADS  Google Scholar 

  43. Lee K, Shin H, Moon WK, Jeon JU, and Park YE (1999) Jpn J Appl Phys 38: L264

    Article  ADS  Google Scholar 

  44. Gruverman A (1999) Appl Phys Lett 75: 1452

    Article  ADS  Google Scholar 

  45. Hong JW, Noh KH, Park SI, Kwun SI, and Kim ZG (1999) Rev Sci Instrum 70: 1735

    Article  ADS  Google Scholar 

  46. Abplanalp M (2001) Dr Nat Sci thesis, Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  47. Likodimos V, Orlik XK, Pardi L, Labardi M, and Allegrini M (2000) J Appl Phys 87: 443

    Article  ADS  Google Scholar 

  48. Hong JW, Noh KH, Park SI, Kwun SI, and Kim ZG (1998) Phys Rev B 58: 5078

    Article  ADS  Google Scholar 

  49. Eng LM, Guntherodt H-J, Schneider GA, Kopke U, Munoz-Saldana (1999) J Appl Phys Lett 74: 233

    Article  ADS  Google Scholar 

  50. Eng LM, Guntherodt H-J, Rosenman G, Skliar A, Oron M, Katz M, and Eger D (1998) J Appl Phys 83: 5973

    Article  ADS  Google Scholar 

  51. Roelofs A, Boettger U, Waser R, Schlaphof F, Trogisch S, and Eng LM (2000) Appl Phys Lett 77: 3444

    Article  ADS  Google Scholar 

  52. Borisevich AY, Kalinin SV, Bonnell DA, and Davies PK (2001) J Mat Res 16: 329

    Article  ADS  Google Scholar 

  53. Tybell T, Ahn CH, and Triscone JM (1999) Appl Phys Lett 75: 856

    Article  ADS  Google Scholar 

  54. Harnagea C (2001) Dr Rer Nat thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, 2001

    Google Scholar 

  55. Ganpule C, PhD thesis, University of Maryland, College Park, 2001

    Google Scholar 

  56. Kalinin SV, PhD thesis, University of Pennsylvania, Philadelphia, 2002

    Google Scholar 

  57. Franke K, Huelz H, and Weihnacht M (1998) Surf Sci 415: 178–182

    Article  ADS  Google Scholar 

  58. Hong S, Woo J, Shin H, Jeon JU, Park YE, Colla EL, Setter N, Kim E, and No K (2001) J Appl Phys 89: 1377

    Article  ADS  Google Scholar 

  59. Terris BD, Stern JE, Rugar D, and Mamin HJ (1989) Phys Rev Lett 63: 2669

    Article  ADS  Google Scholar 

  60. Jackson JD (1998) Classical Electrodynamics John Wiley, New York

    Google Scholar 

  61. Cohen M, private communication

    Google Scholar 

  62. Mele EJ (2001) Am J Phys 69: 557

    Article  ADS  Google Scholar 

  63. Lindell IV, Nikoskinen KI, and Viljanen A (1997) IEE Proc-Sci Meas Technol 144: 156

    Article  Google Scholar 

  64. Smythe WR (1968) Static and Dynamic Electricity. McGraw-Hill, New York

    Google Scholar 

  65. Lebedev NN, Skal’skaya IP, Uflyand YaS (1966) Problems in Mathematical Physics. Pergamon Press

    Google Scholar 

  66. Jacobs HO, Leuchtmann P, Homan OJ, and Stemmer A (1998) J Appl Phys 84: 1168

    Article  ADS  Google Scholar 

  67. Timoshenko S and Goodier JN (1951) Theory of Elasticity. McGraw Hill, New York

    MATH  Google Scholar 

  68. Burnham NA and Colton RJ (2000) Nanomechanics. In: DA Bonnell (ed) Scanning Probe Microscopy and Spectroscopy: Theory, Techniques and Applications. Wiley VCH, New York, p 337

    Google Scholar 

  69. Ding HJ, Hou PF, and Guo FL (2000) Int J Solid Struct 37: 3201

    Article  MATH  Google Scholar 

  70. Parton VZ and Kudryavtsev BA (1988) Electromagnetoelasticity. Gordon and Breach, New York

    Google Scholar 

  71. Giannakopoulos AE and Suresh S (1999) Acta Mater 47: 2153

    Article  Google Scholar 

  72. Melkumyan SA and Ulitko AF (1987) Prikladnaya mechanika 23: 44

    Google Scholar 

  73. Karapetian E, Sevostianov I, and Kachanov M (2000) Phil Mag B 80: 331

    Article  ADS  Google Scholar 

  74. Haojiang D and Weiqiu C (eds) (2001) Three Dimensional Problems of Piezoelasticity. Nova Science Publishers, Huntington, NY

    Google Scholar 

  75. Shaw TM, Trolier-McKinstry S, and McIntyre PC (2000) Annu Rev Mater Sci 30: 263

    Article  ADS  Google Scholar 

  76. Giannakopoulos AE (2000) J Appl Mech 67: 409

    Article  MATH  Google Scholar 

  77. Kalinin SV and Bonnell DA (2002) Phys Rev B 65: 125408

    Google Scholar 

  78. Kalinin SV and Bonnell DA (2000) Mat Res Soc Symp Proc 655: CC72

    Google Scholar 

  79. Xu Y (1991) Ferroelectric Materials and Their Applications. North-Holland, Amsterdam

    Google Scholar 

  80. Hellwege K-H and Hellwege AM (eds) (1981) Landolt-Bornstein New Series Vol. 16a, Springer-Verlag

    Google Scholar 

  81. Berlincourt D (1971) In: Mattiat OE (ed) Ultrasonic Transducer Materials. Plenum Press, New York

    Google Scholar 

  82. Kalinin SV and Bonnell DA (2002) J Mat Res 17: 936

    Article  ADS  Google Scholar 

  83. Electric Scanning Probe Imaging and Modification of Ferroelectric 82. This analysis does not take into account the effect of buckling oscillations of the cantilever as discussed in Section 1.6 However, the latter depends on the cantilever spring constant, rather than indentation force; therefore, the magnitudes of these effects can not be compared directly

    Google Scholar 

  84. Gruverman A, Kholkin A, Kingon A, Tokumoto H (2001) Appl Phys Lett 78: 2751

    Article  ADS  Google Scholar 

  85. Abplanalp M, Fousek J, and Gunter P (2001) Phys Rev Lett 86: 5799

    Article  ADS  Google Scholar 

  86. Zavala G, Fendler JH, Trolier-Mckinstry S (1998) J Korean Phys Soc 32: S1464

    Google Scholar 

  87. Christman JA, Woolcott RR, Kingon AI, and Nemanich RJ (1998) Appl Phys Lett 73: 3851

    Article  ADS  Google Scholar 

  88. Franke K, Huelz H, Weihnacht (1998) M Surf Sci 416: 59

    Article  ADS  Google Scholar 

  89. Kalinin SV and Bonnell DA, Appl Phys Lett, to be submitted

    Google Scholar 

  90. Devonshire AF (1949) Phil Mag 40: 1040

    Google Scholar 

  91. Devonshire AF (1951) Phil Mag 42: 1065

    MATH  Google Scholar 

  92. Kalinin SV and Bonnell DA, unpublished

    Google Scholar 

  93. Munoz-Saldana J, private communications

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalinin, S.V., Bonnell, D.A. (2004). Electric Scanning Probe Imaging and Modification of Ferroelectric Surfaces. In: Alexe, M., Gruverman, A. (eds) Nanoscale Characterisation of Ferroelectric Materials. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08901-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08901-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05844-8

  • Online ISBN: 978-3-662-08901-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics