Mycorrhiza pp 181-201 | Cite as

Serological Properties of Mycorrhizas

  • A. Hahn
  • K. Horn
  • B. Hock


Interest in mycorrhizas has grown steadily over the last few years. To thoroughly understand and exploit these complex systems, more information is required at the cellular level. Antibodies, the main tool of serological techniques, are used to characterize extra- and intracellular surfaces and to quantify cellular constituents. For instance, detailed information on surface properties is needed in any cytological approach to the investigation of the host-symbiont “dialogue” and in taxonomic studies. Especially in the field of the arbuscular endomycorrhizas, great differences in ecological behavior and physiological effects occur among isolates which are morphologically similar but which may be distinguished by their serological properties. Finally, field studies require information on the identity and quantity of mycorrhizal fungi in order to understand competition and displacement.


Mycorrhizal Fungus Ectomycorrhizal Fungus Arbuscular Mycorrhiza Spore Wall Serological Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldwell FEB, Hall IR, Smith JMB (1983) Enzyme-linked immunosorbent assay ( ELISA) to identify endomycorrhizal fungi. Soil Biol Biochem 15: 377–378Google Scholar
  2. Aldwell FEB, Hall IR, Smith JMB (1985) Enzyme-linked immunosorbent assay as an aid to taxonomy of the Endogonaceae. Trans Br Mycol Soc 84: 399–402CrossRefGoogle Scholar
  3. Aldwell FEB, Hall IR (1986) Monitoring spread of Glomus mosseae through soil infested with Acaulospora laevis using serological and morphological techniques. Trans Br Mycol Soc 87: 131–134CrossRefGoogle Scholar
  4. Atkinson D (1990) New techniques for the measurement of plant root systems. Communicated at: 1st Conf of the Participants in COST action 810, Einsiedeln, SwitzerlandGoogle Scholar
  5. Beyrle H, Penningsfeld F, Hock B (1991) The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. New Phytol 117: 665–672CrossRefGoogle Scholar
  6. Bonfante-Fasolo P, Vian B, Perotto S, Faccio A, Knox JP (1990) Cellulose and pectin localization in roots of mycorrhizal A Ilium porrum: labelling continuity between host cell wall and interfacial material. Planta 180: 537–547CrossRefGoogle Scholar
  7. Bonfante-Fasolo P, Tamagnone L, Peretto R, Esquerré-Tugayé MT, Mazau D, Mosiniak M, Vian B (1991) Immunocytochemical location of hydroxyproline rich glycoproteins at the interface between a mycorrhizal fungus and its host plants. Protoplasma 165: 127–138CrossRefGoogle Scholar
  8. Bousquet N, Cleyet-Marel JC, Berjaud C, Mousain D (1987) Use of immunoenzymatic techniques for characterization of ectomycorrhizal fungi. Bull OEPP 17: 306–307Google Scholar
  9. Cleyet-Marel JC, Bousquet N, Mousain D (1989) The immunochemical approach for the characterization of ectomycorrhizal fungi. Agric Ecosyst Environ 28: 79–83CrossRefGoogle Scholar
  10. Dewey FM (1988) Development of immunological diagnostic assays for fungal plant pathogens. Brighton Crop Protection Conf Pests and Diseases 1988, pp 777–786Google Scholar
  11. Dewey FM (1990) The use of monoclonal antibodies to detect plant invading fungi. In: Schots A (ed) Monoclonal antibodies in agriculture. Proc Symp Perspectives for monoclonal antibodies in agriculture. Laboratorium for Monoclonal Antibodies, Wageningen, Netherlands-Pudoc, pp 21–25Google Scholar
  12. Dewey FM, Evans D, Coleman J, Priestley R, Hull R, Horsley D, Hawes C (1991) Antibodies in plant science. Acta Bot Neerl 40: 1–27Google Scholar
  13. Egli S, Kälin I (1991) Root window technique for in vivo observation of ectomycorrhiza on forest trees. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 23. Academic Press, London, pp 423–433Google Scholar
  14. Friese CF, Allen MF (1991) Tracking the fates of exotic and local VA mycorrhizal fungi: methods and patterns. Agric Ecosyst Environ 34: 87–96CrossRefGoogle Scholar
  15. Gerdemann JW, Trappe JM (1974) The Endogonaceae in the Pacific Northwest. Mycol Mem (N Y Bot Gard) 5: 1–76Google Scholar
  16. Gianinazzi S, Gianinazzi-Pearson V (1992) Cytology, histochemistry and immunocytochemistry as tools for studying structure and function in endomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 24. Academic Press, London, pp 109–139Google Scholar
  17. Gourp V, Pargney J-C (1991) Acid phosphatases immunocytolocalization of Pisolothus tinctorius L. during its confrontation with Pinus sylvestris (Pers.) Desv. root system. Cryptogam Mycol 12: 293–304Google Scholar
  18. Hardham AR, Suzaki E, Perkin JL (1986) Monoclonal antibodies to isolate species-and genus-specific components on the surface of zoospores and cysts of the fungus Phytophthora cimmamomi. Can J Bot 64: 311–321CrossRefGoogle Scholar
  19. Hock B, Liebmann S, Beyrle H, Dressel K (1992) Phytohormone analysis by enzyme immunoassays. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 24. Academic Press, London, pp 249–274Google Scholar
  20. Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181: 512–521CrossRefGoogle Scholar
  21. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497PubMedCrossRefGoogle Scholar
  22. Kough J, Malajczuk N, Linderman RG (1983) Use of the indirect immunofluorescent technique to study the vesicular-arbuscular fungus Glomus epigaeum and other Glomus species. New Phytol 94: 57–62CrossRefGoogle Scholar
  23. Kraigher H, Grayling A, Wang TL, Hanke DE (1991) Cytokinin production by two ectomycorrhizal fungi in liquid culture. Phytochemistry 30: 2249–2254CrossRefGoogle Scholar
  24. Legocki RP, Verma DPS (1980) Identification of “nodule-specific” host proteins (nodulins) involved in the development of the Rhizobium-legume symbiosis. Cell 20: 153–163PubMedCrossRefGoogle Scholar
  25. Mazau D, Rumeau D, Esquerre-Tugaye MT (1988) Two different families of hydroxyproline-rich glycoproteins in melon callus. Biochemical and immunochemical studies. Plant Physiol 86: 540–546Google Scholar
  26. Mernaugh RL, Mernaugh GR, Kovacs GR (1990) The immune response: antigens, antibodies, antigen-antibody interactions. In: Hampton R, Ball E, De Boer S (eds) Serological methods for the detection of viral and bacterial plant pathogens. APS Press, St Paul, pp 3–14Google Scholar
  27. Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32: 267–324Google Scholar
  28. Nilsson BO, Larsson A (1990) Intrasplenic immunization with minute amounts of antigen. Immunol Today 11: 10–12PubMedCrossRefGoogle Scholar
  29. Oramas-Shirey M, Morton JB (1990) Immunological stability among different geographic isolates of the arbuscular mycorrhizal fungus Glomus occultum. Abstr 90th Annu Meet American Society for Microbiology: 311 (Q-138)Google Scholar
  30. Peretto R, Perotto S, Faccio A, Bonfante-Fasolo P (1990) Cell surface in Calluna vulgaris L. hair roots. Protoplasma 155: 1–18CrossRefGoogle Scholar
  31. Perotto S, Peretto R, Moré D, Bonfante-Fasolo P (1990) Ericoid fungal strains from an alpine zone: their cytological and cell surface characteristics. Symbiosis 9: 167–172Google Scholar
  32. Perotto S, Malavasi F, Butcher GW (1992) Use of monoclonal antibodies to study mycorrhiza: present applications and perspectives. In: Norris JR, Read DJGoogle Scholar
  33. Varma AK (eds) Methods in microbiology 24. Academic Press, London, pp 221–248Google Scholar
  34. Roitt I, Brostoff J, Male D (1985) Immunology. Gower Medical Publ, LondonGoogle Scholar
  35. Sanders IR, Ravolanirina F, Gianinazzi-Pearson V, Gianinazzi S, Lemoine MC (1992) Detection of specific antigens in the vesicular-arbuscular mycorrhizal fungi Gigaspora margarita and Acaulospora laevis using polyclonal antibodies to soluble spore fractions. Mycol Res 96: 477–480CrossRefGoogle Scholar
  36. Schmidt EL, Biesbrock JA, Bohlool BB, Marx DH (1974) Study of mycorrhizas by means of fluorescent antibody. Can J Microbiol 20: 137–139PubMedCrossRefGoogle Scholar
  37. Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A, Bonfante-Fasolo P (1989) Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta 177: 447–455CrossRefGoogle Scholar
  38. Ste-Marie L, Senechal S, Boushira M, Garzon S, Strykowski H, Pedneault L, de Repentigny L (1990) Production and characterization of monoclonal antibodies to cell wall antigens of Aspergillus fumigatus. Infect Immun 58: 2105–2114PubMedGoogle Scholar
  39. Straker CJ, Gianinazzi-Pearson V, Gianinazzi S, Cleyet-Marel JC, Bousquet N (1989) Electrophoretic and immunological studies on acid phosphatase from a mycorrhizal fungus of Erica hispidula L. New Phytol 111: 215–221CrossRefGoogle Scholar
  40. Vögeli U, Meins F Jr, Boller T (1988) Co-ordinated regulation of chitinase and ß1,3-glucanase in bean leaves. Planta 174: 364–372CrossRefGoogle Scholar
  41. Weinbaum BS, Allen MF, Friese CF (1992) Tracking the fate of Acaulospora and Scutellospora using fluorescent antibodies. Newsl MSA 43: 54Google Scholar
  42. Wilson IM, Trinick MJ, Parker CA (1983) The identification of vesicular-arbuscular mycorrhizal fungi using immunofluorescence. Soil Biol Biochem 15: 439–445CrossRefGoogle Scholar
  43. Wright SF, Morton JB (1989) Detection of vesicular-arbuscular mycorrhizal fungus colonization of roots by using a dot-immunoblot assay. Appl Environ Microbiol 55: 761–763PubMedGoogle Scholar
  44. Wright SF, Morton JB, Sworobuk JE (1987) Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay. Appl Environ Microbiol 53: 2222–2225PubMedGoogle Scholar
  45. Wyss P, Bonfante P (1993) Amplification of genomic DNA of arbuscular-mycorrhizal ( AM) fungi by PCR using short arbitrary primers. Mycol Res 97: 1351–1357Google Scholar
  46. Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182: 22–26CrossRefGoogle Scholar
  47. Zollfrank U, Sautter C, Hock B (1987) Fluorescence immunohistochemical detection of Armillaria and Heterobasidion in Norway spruce. Eur J For Pathol 17: 230–237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • A. Hahn
    • 1
  • K. Horn
    • 1
  • B. Hock
    • 1
  1. 1.Department of BotanyTU München at WeihenstephanFreisingGermany

Personalised recommendations