Skip to main content

Serological Properties of Mycorrhizas

  • Chapter
Mycorrhiza

Abstract

Interest in mycorrhizas has grown steadily over the last few years. To thoroughly understand and exploit these complex systems, more information is required at the cellular level. Antibodies, the main tool of serological techniques, are used to characterize extra- and intracellular surfaces and to quantify cellular constituents. For instance, detailed information on surface properties is needed in any cytological approach to the investigation of the host-symbiont “dialogue” and in taxonomic studies. Especially in the field of the arbuscular endomycorrhizas, great differences in ecological behavior and physiological effects occur among isolates which are morphologically similar but which may be distinguished by their serological properties. Finally, field studies require information on the identity and quantity of mycorrhizal fungi in order to understand competition and displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldwell FEB, Hall IR, Smith JMB (1983) Enzyme-linked immunosorbent assay ( ELISA) to identify endomycorrhizal fungi. Soil Biol Biochem 15: 377–378

    Google Scholar 

  • Aldwell FEB, Hall IR, Smith JMB (1985) Enzyme-linked immunosorbent assay as an aid to taxonomy of the Endogonaceae. Trans Br Mycol Soc 84: 399–402

    Article  Google Scholar 

  • Aldwell FEB, Hall IR (1986) Monitoring spread of Glomus mosseae through soil infested with Acaulospora laevis using serological and morphological techniques. Trans Br Mycol Soc 87: 131–134

    Article  Google Scholar 

  • Atkinson D (1990) New techniques for the measurement of plant root systems. Communicated at: 1st Conf of the Participants in COST action 810, Einsiedeln, Switzerland

    Google Scholar 

  • Beyrle H, Penningsfeld F, Hock B (1991) The role of nitrogen concentration in determining the outcome of the interaction between Dactylorhiza incarnata (L.) Soó and Rhizoctonia sp. New Phytol 117: 665–672

    Article  CAS  Google Scholar 

  • Bonfante-Fasolo P, Vian B, Perotto S, Faccio A, Knox JP (1990) Cellulose and pectin localization in roots of mycorrhizal A Ilium porrum: labelling continuity between host cell wall and interfacial material. Planta 180: 537–547

    Article  CAS  Google Scholar 

  • Bonfante-Fasolo P, Tamagnone L, Peretto R, Esquerré-Tugayé MT, Mazau D, Mosiniak M, Vian B (1991) Immunocytochemical location of hydroxyproline rich glycoproteins at the interface between a mycorrhizal fungus and its host plants. Protoplasma 165: 127–138

    Article  CAS  Google Scholar 

  • Bousquet N, Cleyet-Marel JC, Berjaud C, Mousain D (1987) Use of immunoenzymatic techniques for characterization of ectomycorrhizal fungi. Bull OEPP 17: 306–307

    Google Scholar 

  • Cleyet-Marel JC, Bousquet N, Mousain D (1989) The immunochemical approach for the characterization of ectomycorrhizal fungi. Agric Ecosyst Environ 28: 79–83

    Article  Google Scholar 

  • Dewey FM (1988) Development of immunological diagnostic assays for fungal plant pathogens. Brighton Crop Protection Conf Pests and Diseases 1988, pp 777–786

    Google Scholar 

  • Dewey FM (1990) The use of monoclonal antibodies to detect plant invading fungi. In: Schots A (ed) Monoclonal antibodies in agriculture. Proc Symp Perspectives for monoclonal antibodies in agriculture. Laboratorium for Monoclonal Antibodies, Wageningen, Netherlands-Pudoc, pp 21–25

    Google Scholar 

  • Dewey FM, Evans D, Coleman J, Priestley R, Hull R, Horsley D, Hawes C (1991) Antibodies in plant science. Acta Bot Neerl 40: 1–27

    CAS  Google Scholar 

  • Egli S, Kälin I (1991) Root window technique for in vivo observation of ectomycorrhiza on forest trees. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 23. Academic Press, London, pp 423–433

    Google Scholar 

  • Friese CF, Allen MF (1991) Tracking the fates of exotic and local VA mycorrhizal fungi: methods and patterns. Agric Ecosyst Environ 34: 87–96

    Article  Google Scholar 

  • Gerdemann JW, Trappe JM (1974) The Endogonaceae in the Pacific Northwest. Mycol Mem (N Y Bot Gard) 5: 1–76

    Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V (1992) Cytology, histochemistry and immunocytochemistry as tools for studying structure and function in endomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 24. Academic Press, London, pp 109–139

    Google Scholar 

  • Gourp V, Pargney J-C (1991) Acid phosphatases immunocytolocalization of Pisolothus tinctorius L. during its confrontation with Pinus sylvestris (Pers.) Desv. root system. Cryptogam Mycol 12: 293–304

    Google Scholar 

  • Hardham AR, Suzaki E, Perkin JL (1986) Monoclonal antibodies to isolate species-and genus-specific components on the surface of zoospores and cysts of the fungus Phytophthora cimmamomi. Can J Bot 64: 311–321

    Article  Google Scholar 

  • Hock B, Liebmann S, Beyrle H, Dressel K (1992) Phytohormone analysis by enzyme immunoassays. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 24. Academic Press, London, pp 249–274

    Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181: 512–521

    Article  CAS  Google Scholar 

  • Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497

    Article  PubMed  Google Scholar 

  • Kough J, Malajczuk N, Linderman RG (1983) Use of the indirect immunofluorescent technique to study the vesicular-arbuscular fungus Glomus epigaeum and other Glomus species. New Phytol 94: 57–62

    Article  Google Scholar 

  • Kraigher H, Grayling A, Wang TL, Hanke DE (1991) Cytokinin production by two ectomycorrhizal fungi in liquid culture. Phytochemistry 30: 2249–2254

    Article  CAS  Google Scholar 

  • Legocki RP, Verma DPS (1980) Identification of “nodule-specific” host proteins (nodulins) involved in the development of the Rhizobium-legume symbiosis. Cell 20: 153–163

    Article  PubMed  CAS  Google Scholar 

  • Mazau D, Rumeau D, Esquerre-Tugaye MT (1988) Two different families of hydroxyproline-rich glycoproteins in melon callus. Biochemical and immunochemical studies. Plant Physiol 86: 540–546

    Google Scholar 

  • Mernaugh RL, Mernaugh GR, Kovacs GR (1990) The immune response: antigens, antibodies, antigen-antibody interactions. In: Hampton R, Ball E, De Boer S (eds) Serological methods for the detection of viral and bacterial plant pathogens. APS Press, St Paul, pp 3–14

    Google Scholar 

  • Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32: 267–324

    Google Scholar 

  • Nilsson BO, Larsson A (1990) Intrasplenic immunization with minute amounts of antigen. Immunol Today 11: 10–12

    Article  PubMed  CAS  Google Scholar 

  • Oramas-Shirey M, Morton JB (1990) Immunological stability among different geographic isolates of the arbuscular mycorrhizal fungus Glomus occultum. Abstr 90th Annu Meet American Society for Microbiology: 311 (Q-138)

    Google Scholar 

  • Peretto R, Perotto S, Faccio A, Bonfante-Fasolo P (1990) Cell surface in Calluna vulgaris L. hair roots. Protoplasma 155: 1–18

    Article  CAS  Google Scholar 

  • Perotto S, Peretto R, Moré D, Bonfante-Fasolo P (1990) Ericoid fungal strains from an alpine zone: their cytological and cell surface characteristics. Symbiosis 9: 167–172

    Google Scholar 

  • Perotto S, Malavasi F, Butcher GW (1992) Use of monoclonal antibodies to study mycorrhiza: present applications and perspectives. In: Norris JR, Read DJ

    Google Scholar 

  • Varma AK (eds) Methods in microbiology 24. Academic Press, London, pp 221–248

    Google Scholar 

  • Roitt I, Brostoff J, Male D (1985) Immunology. Gower Medical Publ, London

    Google Scholar 

  • Sanders IR, Ravolanirina F, Gianinazzi-Pearson V, Gianinazzi S, Lemoine MC (1992) Detection of specific antigens in the vesicular-arbuscular mycorrhizal fungi Gigaspora margarita and Acaulospora laevis using polyclonal antibodies to soluble spore fractions. Mycol Res 96: 477–480

    Article  Google Scholar 

  • Schmidt EL, Biesbrock JA, Bohlool BB, Marx DH (1974) Study of mycorrhizas by means of fluorescent antibody. Can J Microbiol 20: 137–139

    Article  PubMed  CAS  Google Scholar 

  • Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A, Bonfante-Fasolo P (1989) Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta 177: 447–455

    Article  CAS  Google Scholar 

  • Ste-Marie L, Senechal S, Boushira M, Garzon S, Strykowski H, Pedneault L, de Repentigny L (1990) Production and characterization of monoclonal antibodies to cell wall antigens of Aspergillus fumigatus. Infect Immun 58: 2105–2114

    PubMed  CAS  Google Scholar 

  • Straker CJ, Gianinazzi-Pearson V, Gianinazzi S, Cleyet-Marel JC, Bousquet N (1989) Electrophoretic and immunological studies on acid phosphatase from a mycorrhizal fungus of Erica hispidula L. New Phytol 111: 215–221

    Article  CAS  Google Scholar 

  • Vögeli U, Meins F Jr, Boller T (1988) Co-ordinated regulation of chitinase and ß1,3-glucanase in bean leaves. Planta 174: 364–372

    Article  Google Scholar 

  • Weinbaum BS, Allen MF, Friese CF (1992) Tracking the fate of Acaulospora and Scutellospora using fluorescent antibodies. Newsl MSA 43: 54

    Google Scholar 

  • Wilson IM, Trinick MJ, Parker CA (1983) The identification of vesicular-arbuscular mycorrhizal fungi using immunofluorescence. Soil Biol Biochem 15: 439–445

    Article  Google Scholar 

  • Wright SF, Morton JB (1989) Detection of vesicular-arbuscular mycorrhizal fungus colonization of roots by using a dot-immunoblot assay. Appl Environ Microbiol 55: 761–763

    PubMed  CAS  Google Scholar 

  • Wright SF, Morton JB, Sworobuk JE (1987) Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay. Appl Environ Microbiol 53: 2222–2225

    PubMed  CAS  Google Scholar 

  • Wyss P, Bonfante P (1993) Amplification of genomic DNA of arbuscular-mycorrhizal ( AM) fungi by PCR using short arbitrary primers. Mycol Res 97: 1351–1357

    Google Scholar 

  • Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182: 22–26

    Article  CAS  Google Scholar 

  • Zollfrank U, Sautter C, Hock B (1987) Fluorescence immunohistochemical detection of Armillaria and Heterobasidion in Norway spruce. Eur J For Pathol 17: 230–237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hahn, A., Horn, K., Hock, B. (1995). Serological Properties of Mycorrhizas. In: Varma, A., Hock, B. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08897-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08897-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08899-9

  • Online ISBN: 978-3-662-08897-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics