Advertisement

Mycorrhiza pp 157-180 | Cite as

Use of Plant Mutants, Intraspecific Variants, and Non-Hosts in Studying Mycorrhiza Formation and Function

  • R. L. Peterson
  • S. M. Bradbury

Abstract

Many questions in developmental biology have been addressed by the use of mutants showing one or more genetically based phenotypic variations from the wild type. In plant biology this approach has been particularly useful, utilizing Arabidopsis thaliana, a dicotyledonous angiosperm species with a small genome and a short life cycle. The short life cycle and the small size of the plant allow the effective screening in petri plates of large numbers of plants for spontaneous or induced mutations (Somerville 1989; Schiefelbein and Benfey 1991). This species, unfortunately, is normally non-mycorrhizal (but see Kruckelmann 1975) and does not associate with symbiotic bacteria, so other more complex systems have been used to study symbioses. The Rhizobium-legume symbiosis has been explored in detail using both plant and Rhizobium mutants (Verma and Brisson 1987), and considerable information has been obtained concerning the genetic control by both symbionts in the complex processes of nodulation and nitrogen fixation.

Keywords

Mycorrhizal Fungus Plant Mutant Mycorrhizal Colonization Colonization Level Vesicular Arbuscular Mycorrhizal Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen MF, Allen EB (1990) Carbon source of VA mycorrhizal fungi associated with Chenopodiaceae from a semiarid shrub-steppe. Ecology 71: 2019–2021CrossRefGoogle Scholar
  2. Allen MF, Allen EB, Friese EB (1989) Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111: 45–49CrossRefGoogle Scholar
  3. Avio L, Sbrana C, Giovannetti M (1990) The response of different species of Lupinus to VAM endophytes. Symbiosis 9: 321–323Google Scholar
  4. Azcòn R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87: 677–685CrossRefGoogle Scholar
  5. Barnes DK, Vance CP, Heichel GH, Peterson MA, Ellis WR (1988) Registration of a non-nodulation and three ineffective nodulation alfalfa germplasms. Crop Sci 28: 721–722CrossRefGoogle Scholar
  6. Bécard G, Piché Y (1990) Physiological factors determining vesicular-arbuscular mycorrhizal formation in host and non-host Ri T-DNA transformed roots. Can J Bot 68: 1260–1264CrossRefGoogle Scholar
  7. Bertheau Y, Gianinazzi-Pearson V, Gianinazzi S (1980) Développement et expression de l’association endomycorhizienne chez le Blé I. Mise en évidence d’un effet variétal. Ann Amélior Plant 30: 67–78Google Scholar
  8. Allen MF (1983) Formation of vesicular-arbuscular mycorrhizae in A triplex gardneri (Chenopodiaceae): seasonal response in a cold desert. Mycologia 75: 773–776CrossRefGoogle Scholar
  9. Bevege DI, Bowen GD (1975) Endogone strain and host plant differences in development of vesicular-arbuscular mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 77–86Google Scholar
  10. Bhattarai ID, Mishra RR (1984) Study on the vesicular-arbuscular mycorrhiza of three cultivars of potato (Solanum tuberosum L.). Plant Soil 79: 299–303CrossRefGoogle Scholar
  11. Blair DA (1987) A comparative study of mycorrhizal associations between Glomus versiforme and roots of Lotus and Trifolium. MSc Thesis, University of Guelph, Guelph, OntarioGoogle Scholar
  12. Bonfante-Fasolo P (1984) Anatomy and morphology of VA mycorrhizae. In: Powell CL1, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, pp 5–33Google Scholar
  13. Bradbury SM (1992) Colonization of three alfalfa nodulation genotypes by vesiculararbuscular mycorrhizal fungi. MSc Thesis, University of Guelph, Guelph, OntarioGoogle Scholar
  14. Bradbury SM, Peterson RL, Bowley SR (1991) Interactions between three alfalfa nodulation genotypes and two Glomus species. New Phytol 119: 115–120CrossRefGoogle Scholar
  15. Bradbury SM, Peterson RL, Bowley SR (1993) Further evidence for a correlation between nodulation genotypes in alfalfa (Medicago sativa L.) and mycorrhiza formation. New Phytol 124: 665–673CrossRefGoogle Scholar
  16. Cline ML, Reid CPP (1982) Seed source and mycorrhizal fungus effects on growth of containerized Pinus contorta and Pinus ponderosa seedlings. For Sci 28: 237–250Google Scholar
  17. Coltman RR, Kuo W-H (1991) Screening for low-phosphorus tolerance among tomato strains. In: Wright RJ (eds) Plant-soil interactions at low pH. Kluwer, Dordrecht, pp 967–975CrossRefGoogle Scholar
  18. Daniels BA, Trappe JM (1980) Factors affecting spore germination of the vesiculararbuscular mycorrhizal fungus, Glomus epigaeus. Mycologia 72: 457–471CrossRefGoogle Scholar
  19. Dixon RK, Garrett HE, Stelzer HE (1987) Growth and ectomycorrhizal development of loblolly pine progenies inoculated with three isolates of Pisolithus tinctorius. Silvae Genet 36: 240–245Google Scholar
  20. Duc E, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of nodnodulating plant mutants (myc) obtained in pea (Pisum sativum L.) and Faba bean (Vicia faba L.). Plant Sci 60: 215–222CrossRefGoogle Scholar
  21. Duddridge JA (1986) The development and ultrastructure of ectomycorrhizas. IV. Compatible and incompatible interactions between Suillus grevillei (Klotzsch) Sing. and a number of ectomycorrhizal hosts in vitro in the presence of exogenous carbohydrate. New Phytol 103: 465–471CrossRefGoogle Scholar
  22. El-Atrach F, Vierheilig H, Ocampo JA (1989) Influence of non-host plants on vesicular-arbuscular mycorrhizal infection of host plants on spore germination. Soil Biol Biochem 21: 161–163CrossRefGoogle Scholar
  23. Estaún V, Calvet C, Hayman DS (1987) Influence of plant genotype on mycorrhizal infection: response of three pea cultivars. Plant Soil 103: 295–298CrossRefGoogle Scholar
  24. Garriock ML, Peterson RL, Ackerley CA (1989) Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus Glomus versiforme. New Phytol 112: 85–92CrossRefGoogle Scholar
  25. Gerdemann JW (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annu Rev Phytopathol 6: 397–418CrossRefGoogle Scholar
  26. Gianinazzi-Pearson V, Gianinazzi S (1989) Cellular and genetical aspects of interactions between hosts and fungal symbionts in mycorrhizae. Genome 31: 336–341CrossRefGoogle Scholar
  27. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7: 243–255Google Scholar
  28. Gianinazzi-Pearson V, Gianinazzi S, Guillemin JP, Trouvelot A, Duc G (1991) Genetic and cellular analysis of resistance of vesicular-arbuscular (VA) mycorrhizal fungi in pea mutants. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 336–342Google Scholar
  29. Glenn MG, Chew FS, Williams PH (1985) Hyphal penetration of Brassica ( Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol 99: 463–472Google Scholar
  30. Glenn MG, Chew FS, Williams PH (1988) Influence of glucosinalate content of Brassica ( Cruciferae) roots on growth of vesicular-arbuscular mycorrhizal fungi. New Phytol 110: 217–225Google Scholar
  31. Gollotte A, Gianinazzi-Pearson V, Giovannetti M, Sbrana C, Avio L, Gianinazzi S (1993) Cellular localization and cytochemical probing of resistance reactions to arbuscular mycorrhizal fungi in a “locus a” myc-mutant of Pisum sativum L. Planta 191: 112–122CrossRefGoogle Scholar
  32. Graham JH, Eissenstat DM (1993) Host genotype and the formation and function of VA mycorrhizae. Plant Soil (in press)Google Scholar
  33. Graham JH, Eissenstat DM, Drouillard DL (1991) On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct Ecol 5: 773–779CrossRefGoogle Scholar
  34. Granger RL, Plenchette C, Fortin JA (1983) Effect of a vesicular arbuscular (VA) endomycorrhizal fungus (Glomus epigaeum) on the growth and leaf mineral content of two apple clones propagated in vitro. Can J Plant Sci 63: 551–555CrossRefGoogle Scholar
  35. Guillemin J-P, Gianinazzi S, Gianinazzi-Pearson V, Duc G, Trouvelot A, Morandi D (1990) Plant genes determining VA endomycorrhizal infection. In: 8th NACOM Innovation and Hierarchial Integration Abstr Jackson Hole, Wyoming September, 1990. Compiled by MF Allen and SE WilliamsGoogle Scholar
  36. Habte MA, Manjunath A (1991) Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza 1: 3–12CrossRefGoogle Scholar
  37. Hall IR (1978) Effect of vesicular-arbuscular mycorrhizal on two varieties of maize and one of sweet corn. NZ J Agric Res 21: 517–519CrossRefGoogle Scholar
  38. Heckman JR, Angle JS (1987) Variation between soybean cultivars in vesiculararbuscular mycorrhiza fungi colonization. Agron J 79: 428–430CrossRefGoogle Scholar
  39. Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70: 2032–2040CrossRefGoogle Scholar
  40. Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular-arbuscular mycorrhizaein the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56: 2813–2817CrossRefGoogle Scholar
  41. Jun DJ, Allen EB (1991) Physiological responses of 6 wheatgrass cultivars to mycorrhizae. J Range Manage 44: 336–341CrossRefGoogle Scholar
  42. Kandasamy D, Radha NV, Oblisami G (1986) Response of different mulberry varieties to the inoculation of VA-mycorrhizal fungi. Indian J Agric Sci 25: 36–39Google Scholar
  43. Kapulink Y, Kushnir U (1991) Growth dependency of wild, primitive and modern cultivated wheat lines on vesicular-arbuscular mycorrhiza fungi. Euphytica 56: 27–36Google Scholar
  44. Kesava Rao PS, Tilak KVBR, Arunachalam V (1990) Genetic variation for VA mycorrhiza-dependent phosphate mobilization in groundnut (Arachis hypogaea L.). Plant Soil 122: 137–142Google Scholar
  45. Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol 43: 557–581CrossRefGoogle Scholar
  46. Krishna KR, Shetty KG, Dart PJ, Andrews DJ (1985) Genotype dependent variation in mycorrhizal colonization and response to mycorrhizal colonization and response to inoculation of pearl millet. Plant Soil 86: 113–125CrossRefGoogle Scholar
  47. Kruckelmann HW (1975) Effects of fertilizers, soils, soil tillage, and plant species on the frequency of Endogone chlamydospores and mycorrhizal infection in arable soils. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 511–525Google Scholar
  48. Lackie SM, Bowley SR, Peterson RL (1988) Comparison of colonization among half-sib families of Medicago sativa L. by Glomus versiforme ( Daniels and Trappe) Berch. New Phytol 108: 477–482Google Scholar
  49. Lambert DH, Cole H Jr, Barker DE (1980) Variation in the response of alfalfa clones and cultivars to mycorrhizae and phosphorus. Crop Sci 20: 615–618CrossRefGoogle Scholar
  50. Last FT, Mason PA, Pelham J, Ingleby K (1984) Fruitbody production by sheathing mycorrhizal fungi: effects of “host” genotypes and propagating soils. For Ecol Manage 9: 221–227CrossRefGoogle Scholar
  51. Lei J, Lapeyrie F, Malajczuk N, Dexheimer J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius (Pers.) Coker and Couch on roots of Eucalyptus urophylla S.T. Blake in vitro. II. Ultrastructural and biochemical changes at the early stage of mycorrhiza formation. New Phytol 116: 115–122Google Scholar
  52. Lundeberg G (1968) The formation of mycorrhizae in different provenances of pine (Pinus silvestris L.). Sven Bot Tidskr 62: 249–255Google Scholar
  53. Malajczuk N, Molina R, Trappe JM (1982) Ectomycorrhiza formation in Eucalyptus. I. Pure culture synthesis, host specificity and mycorrhizal compatibility with Pinus radiata. New Phytol 91: 467–482Google Scholar
  54. Malajczuk N, Dell B, Bougher NL (1987) Ectomycorrhiza formation in Eucalyptus. III. Superficial ectomycorrhizas initiated by Hysterangium and Cortinarius species. New Phytol 105: 421–428Google Scholar
  55. Manske GGB (1989) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat. Agric Ecosystems Environ 29: 273–280CrossRefGoogle Scholar
  56. Manske GGB (1990) Genetical analysis of the efficiency of VA mycorrhiza with spring wheat. I. Genotypical differences and a reciprocal cross between an efficient and non-efficient variety. In: Bassam EL et al. (ed) Genetical aspects of plant mineral nutrition. Kluwer, Dordrecht, pp 397–405CrossRefGoogle Scholar
  57. Marx DH, Bryan WC (1971) Formation of ectomycorrhizae on half-sib progenies of slash pine in aseptic culture. For Sci 17: 488–492Google Scholar
  58. Mason P (1975) The genetics of mycorrhizal associations between Amanita muscaria and Betula verrucosa. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London, pp 567–574Google Scholar
  59. Mason PA, Pelham J (1976) Genetic factors affecting the response of trees to mineral nutrients. In: Cannell MGR, Last FT (eds) Tree physiology and yield improvement. Academic Press, London, pp 437–448Google Scholar
  60. Mercy MA, Shivashankar G, Bagyaraj DJ (1990) Mycorrhizal colonization in cowpea is host dependent and heritable. Plant Soil 121: 292–294CrossRefGoogle Scholar
  61. Molina R (1981) Ectomycorrhizal specificity in the genus Alnus. Can J Bot 59: 325–334CrossRefGoogle Scholar
  62. Molina R, Massicotte M, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community — ecological consequences and practical applications. In: Allen MF (ed) Mycorrhizal functioning. Routledge, Chapman & Hall, New York, pp 357–423Google Scholar
  63. Morley CD, Mosse B (1976) Abnormal vesicular-arbuscular mycorrhizal infections in white clover induced by lupin. Trans Br Mycol Soc 67: 510–513CrossRefGoogle Scholar
  64. Navratil S (1986) Seed source variation in mycorrhizae development of white spruce and lodgepole pine in Alberta, Canada. In: Roots in forest soils: biology and symbioses. Program with abstracts 4–8 Aug 1986, University of Victoria, Victoria, British Columbia IUFRO, pp 201–213Google Scholar
  65. Ocampo JA, Martin J, Hayman DS (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. I. Host and non-host plants grown together. New Phytol 84: 27–35Google Scholar
  66. Ouivier B, Bertheau Y, Diem HG, Gianinazzi-Pearson V (1983) Influence de la variété de Vigna unguiculata dans l’expression de trois associations endomycorhiziennes à vésicules et arbuscules. Can J Bot 61: 354–358CrossRefGoogle Scholar
  67. Powell CLI (1982) Phosphate response curves of mycorrhizal and non-mycorrhizal plants. III. Cultivar effects in Lotus pedunculatus Cay. and Trifolium repens L. NZ J Agric Res 25: 217–222CrossRefGoogle Scholar
  68. Powell CL, Clark GE, Verberne NJ (1982) Growth response of four onion cultivars to several isolates of VA mycorrhizal fungi. NZ J Agric Res 25: 465–470CrossRefGoogle Scholar
  69. Rajapakse S, Miller JC Jr (1987) Intraspecific variability for VA mycorrhizal symbiosis in cowpea (Vigna unguiculata [L.] Walp.) In: Gabelman HW and Loughman BC (eds) Genetics aspects of plant mineral nutrition. Martinus Nijhoff, Dordrecht, pp 523–536Google Scholar
  70. Rajapakse S, Miller JC Jr (1988) Relationship between cowpea root systems and mycorrhizal dependency. HortScience 23: 568–570Google Scholar
  71. Rosado SCS, Kropp BR, Piché Y (1994a) Genetics of ectomycorrhizal symbiosis. I. Host plant variability and heritability of ectomycorrhizal and root traits. New Phytol 126: 105–110Google Scholar
  72. Rosado SCS, Kropp BR, Piché Y (1994b) Genetics of ectomycorrhizal symbiosis. II. Fungal variability and heritability of ectomycorrhizal traits. New Phytol 126: 111–117Google Scholar
  73. Schellenbaum L, Gianinazzi S, Gianinazzi-Pearson V (1992) Comparison of acid soluble protein synthesis in roots of endomycorrhizal wild type Pisum sativum and corresponding isogenic mutants. J Plant Physiol 141: 2–6CrossRefGoogle Scholar
  74. Schiefelbein JW, Benfey PW (1991) The development of plant roots: new approaches to underground problems. Plant Cell 3: 1147–1154PubMedGoogle Scholar
  75. Schmidt SK, Reeves RB (1984) Effect of the non-mycorrhizal pioneer plant Salsola kali L. (Chenopodiaceae) on vesicular-arbuscular mycorrhizal ( VAM) fungi. Am J Bot 71: 1035–1039Google Scholar
  76. Schwab SM, Leonard RT, Merge JA (1984) Quantitative and qualitative comparison of root exudates of mycorrhizal and nonmycorrhizal plant species. Can J Bot 62: 1227–1231CrossRefGoogle Scholar
  77. Smith FA, Smith SE (1981) Mycorrhizal infection and growth of Trifolium subterraneum: use of sterilized soil as a control treatment. New Phytol 88: 299–309CrossRefGoogle Scholar
  78. Smith SE, Robson AD, Abbott LK (1992) The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil 146: 169–179CrossRefGoogle Scholar
  79. Somerville C (1989) Arabidopsis blooms. Plant Cell 1:1131–1135Google Scholar
  80. Stöppler H, Kölsch E, Vogtmann H (1990) Vesicular-arbuscular mycorrhiza in varieties of winter wheat in a low external input system. Biol Agric and Hortic 7: 191–199CrossRefGoogle Scholar
  81. Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65: 419–431CrossRefGoogle Scholar
  82. Thomas GV, Ghai SK (1987) Genotype dependent variation in vesicular-arbuscular mycorrhizal colonization of coconut seedlings. Proc Indian Acad Sci 97: 289–294Google Scholar
  83. Thomson J, Matthes-Sears U, Peterson RL (1990) Effects of seed provenance and mycorrhizal fungi on early seedling growth in Picea mariana. Can J For Res 20: 1739–1745CrossRefGoogle Scholar
  84. Tommerup IC (1984) Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus L. and Trifolium subterraneum L. New Phytol 98: 487–495CrossRefGoogle Scholar
  85. Tonkin CM, Malajczuk N, McComb JA (1989) Ectomycorrhizal formation by micropropagated clones of Eucalyptus marginata inoculated with isolates of Pisolithus tinctorius. New Phytol 111: 209–214CrossRefGoogle Scholar
  86. Toth R, Page T, Castleberry R (1984) Differences in mycorrhizal colonization of maize selections for high and low ear leaf phosphorus. Crop Sci 24: 994–996CrossRefGoogle Scholar
  87. Toth R, Toth D, Starke sD, Smith DR (1990) Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68: 1039–1044CrossRefGoogle Scholar
  88. Traquair JA, Berch SM (1988) Colonization of peach root stocks by indigenous vesicular-arbuscular mycorrhizal ( VAM) fungi. Can J Plant Sci 68: 893–898Google Scholar
  89. Trinick MJ (1977) Vesicular-arbuscular infection and soil phosphorus utilization in Lupinus spp. New Phytol 78: 297–304CrossRefGoogle Scholar
  90. Verma DPS, Brisson N (eds) (1987) Molecular genetics of plant-microbe interactions. Martinus Nijhoff, DordrechtGoogle Scholar
  91. Vierheilig H, Ocampo JA (1990) Role of root extract and volatile substances of non-host plants on vesicular-arbuscular mycorrhizal spore germination. Symbiosis 9: 199–202Google Scholar
  92. Vierheilig H, Ocampo JA (1991a) Receptivity of various wheat cultivars to infection by VA-mycorrhizal fungi as influenced by inoculum potential and the relation of VAM-effectiveness to succinic dehydrogenase activity of the mycelium in the roots. Plant Soil 133: 291–296CrossRefGoogle Scholar
  93. Vierheilig H, Ocampo JA (1991b) Susceptibility and effectiveness of vesiculararbuscular mycorrhizae in wheat cultivars under different growing conditions. Biol Fertil Soils 11: 290–294CrossRefGoogle Scholar
  94. Wright E, Ching KK (1962) Effect of seed source on mycorrhizal formation on Douglas fir seedlings. Northwest Sci 36: 1–6Google Scholar
  95. Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182: 22–26CrossRefGoogle Scholar
  96. Young JL, David EA, Rose SL (1985) Endomycorrhizal fungi in breeder wheats and triticale cultivars field-grown on fertile soil. Agron J 77: 219–224CrossRefGoogle Scholar
  97. Zhu H, Navratil S (1987) The effects of seed source and fungus on growth and ectomycorrhizal formation of tamarack seedlings. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Proc 7th North American Conf on Mycorrhizae, 3–8 May, 1987, Gainesville, FL. Institute of Food and Agricultural Sciences, University of Florida, GainesvilleGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • R. L. Peterson
  • S. M. Bradbury
    • 1
  1. 1.Department of BotanyUniversity of GuelphGuelphCanada

Personalised recommendations