Advertisement

Mycorrhiza pp 29-58 | Cite as

Ectomycorrhiza Development: A Molecular Perspective

  • F. Martin
  • D. Tagu

Abstract

The symbiosis between trees and soilborne ectomycorrhizal fungi results in an intimate relationship between the plant and its symbiotic partner. It provides several benefits to both the host plant and the fungal associate. The prospecting and absorbing activities of the extraradical hyphæ are committed to responding to the metabolic needs of the plant. On the other hand, the fungal hyphæ within the root are protected from competition with other soil microbes and, therefore, are preferential users of the plant photoassimilates. The development of ectomycorrhiza involves the differentiation of structurally specialized fungal tissues and interfaces between the symbionts (Massicotte et al. 1987; Kottke and Oberwinkler 1989; Bonfante-Fasolo and Perotto 1992) and a highly coordinated metabolic interplay (Harley and Smith 1983; Smith and Smith 1990; Martin and Hilbert 1991; Martin and Botton 1993). Morphogenesis of ectomycorrhiza involves substantial reorganization of cell populations and results from the expression of plant and fungal developmental programs. A complex set of signals presumably triggers morphogenetic and physiological changes, so that a permanent and highly efficient symbiotic structure evolves. An understanding of the molecular communication that underlies the temporal and spatial control of genes involved in symbiosis development is now within reach, as more sophisticated techniques of molecular and genetic analysis are applied to mycorrhizal interactions. However, in no instances are the physiological functions for mycorrhiza-specific gene products known, or the mechanisms regulating their expression understood. Consequently, one of the current areas of active research of developmental biology of mycorrhiza is to determine the nature of the mechanisms that control activation and expression of these developmentally critical genes that are indispensable for the orderly progression of morphogenesis. Here we review recent results shedding light on the nature of the molecular signals and mechanisms that determine or modulate the development of ectomycorrhiza.

Keywords

Ectomycorrhizal Fungus Chitinase Activity Mycorrhiza Formation Molecular Perspective Pisolithus Tinctorius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht C, Asselin A, Piché Y, Lapeyrie F (1993) Comparison of Eucalyptus root chitinase patterns following inoculation by ectomycorrhizal or pathogenic fungi in vitro. In: Fritig B, Legrand M (eds) Developments in Plant Pathology. Kluwer, Dordrecht, 380 ppGoogle Scholar
  2. Arines J, Palma JM, Vilarino A (1993) Comparison of protein patterns in nonmycorrhizal and vesicular-arbuscular mycorrhizal roots of red clover. New Phytol 123: 763–768CrossRefGoogle Scholar
  3. Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58: 821–825PubMedGoogle Scholar
  4. Ben-Ze’ev A (1991) Animal cell shape changes and gene expression. BioEssays 13: 207–212PubMedCrossRefGoogle Scholar
  5. Bonfante-Fasolo P (1988) The role of the cell wall as a signal in mycorrhizal associations. NATO ISI Ser. H17, pp 219–235Google Scholar
  6. Bonfante-Fasolo P, Perotto S (1992) Plants and endomycorrhizal fungi: the cellular and molecular basis of their interaction. In: Verma DPS (ed) Molecular signals in plant microbe communications. CPC Press, Boca Raton, pp 445–470Google Scholar
  7. Burgess T, Dell B, Malajczuk N (1993) Variation in development, infectivity and growth stimulation of 20 isolates of Pisolithus inoculated onto Eucalyptus grandis W. Hill ex Maiden. New Phytol 127: 731–739CrossRefGoogle Scholar
  8. Burgess T, Laurent P, Dell B, Malajczuk N, Martin F (1994) Effect of the fungal isolate aggressivity on the biosynthesis of symbiosis-related polypeptides in differentiating eucalypt ectomycorrhiza. Planta (In press)Google Scholar
  9. Campbell MM, Ellis BE (1992a) Fungal elicitor-mediated responses in pine cell cultures. III. Purification and characterization of phenylalanine ammonia-lyase. Plant Physiol 98: 62–70PubMedCrossRefGoogle Scholar
  10. Campbell MM, Ellis BE (1992b) Fungal elicitor-mediated responses in pine cell cultures: cell wall-bound phenolics. Phytochemistry 31: 737–742Google Scholar
  11. Carpenter JL, Ploense SE, Snustad DP, Silfíow CD (1992) Preferential expression of an alpha-tubulin gene of Arabidopsis in pollen. Plant Cell 4: 557–571PubMedGoogle Scholar
  12. Chabot S, Bel-Rhlid R, Chênevert R, Piché Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus Gigaspora margarita by the activity of structurally specific flavonoid compounds under CO2 enrichment conditions. New Phytol 122: 461–467CrossRefGoogle Scholar
  13. Colas Des Francs C, Thiellement H, De Vienne D (1985) Analysis of leaf proteins by two-dimensional gel electrophoresis. Protease action as exemplified by ribulose bisphosphate carboxylase/oxygenase degradation and procedure to avoid proteolysis during extraction. Plant Physiol 78: 178–182PubMedCrossRefGoogle Scholar
  14. Daniels MJ, Collinge DB, Dow JM, Oosbourn AE, Roberts IN (1987) Molecular biology of the interaction of Xanthomonas carnpestris with plants. Plant Physiol Biochem 25: 353–359Google Scholar
  15. Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors: a defence against microbial infection in plants. Annu Rev Plant Physiol 35: 243–275CrossRefGoogle Scholar
  16. Debaud JC, Gay G, Prevost A, Lei J, Dexheimer J (1988) Ectomycorrhizal ability of genetically different homokaryotic and dikaryotic mycelia of Hebeloma cylindrosporum. New Phytol 108: 323–328CrossRefGoogle Scholar
  17. De Carvalho D, Martin F (1992) Changes in the biosynthesis of cell wall polypeptides during the development of eucalypt ectomycorrhizas. In: Molecular biology of forest trees, 5th Worksh of the IUFRO, Carcans-Maubuisson, June 15–18 1992, France, p 9Google Scholar
  18. De Vries OMH, Fekkes MP, Wosten HAB, Wessels JGH (1993) Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch Microbiol 159: 330–335CrossRefGoogle Scholar
  19. Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41: 339–367CrossRefGoogle Scholar
  20. Duchesne LC (1989) Protein synthesis in Pinus resinosa and the ectomycorrhizal fungus Paxillus involutus prior to ectomycorrhiza formation. Trees 3: 73–77CrossRefGoogle Scholar
  21. Dumas E, Tahiri-Alaoui A, Gianinazzi S, Gianinazzi-Pearson V (1989) Observations on modifications in gene expression with VA endomycorrhiza development in tobacco: qualitative and quantitative changes in protein profiles. In: Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L, Smith DC (eds) Endocytobiology IV, 4’ Congr Int l’Endocytologie et la Symbiose, INSA Villeurbanne: pp 153–157Google Scholar
  22. Fosket DE, Morejohn LC (1992) Structural and functional organization of tubulin. Annu Rev Plant Physiol Plant Mol Biol 43: 201–240CrossRefGoogle Scholar
  23. Fries N (1987) Ecological and evolutionary aspects of spore germination in the higher basidiomycetes. Trans Br Mycol Soc 88: 1–7CrossRefGoogle Scholar
  24. Fries N, Serck-Hanssen K,11- Dimberg L, Theander O (1987) Abietic acid, an activator of basidiospore germination in ectomycorrhizal species of the genus Sui//us (Boletaceae). Exp Mycol 11: 360–363Google Scholar
  25. Gay G (1988) Rôle des hormones fongiques dans l’association ectomycorhizienne. Cryptogam Mycol 9: 211–220Google Scholar
  26. Gay G, Debaud JC (1987) Genetic study on indole-3-acetic acid production by ectomycorrhizal Hebeloma species: inter-and intraspecific variability in homo-and dikaryotic mycelia. Appl Microbiol Biotechnol 26: 141–146CrossRefGoogle Scholar
  27. Gay G, Marmeisse R, Fouillet P, Bouletreau M, Debaud JC (1993) Genotype/ nutrition interactions in the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnesi. New Phytol 123: 335–343CrossRefGoogle Scholar
  28. Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7: 243–255Google Scholar
  29. Gianinazzi-Pearson V, Tahiri-Alaoui A, Antoniw JF, Gianinazzi S, Dumas E (1992) Weak expression of the pathogenesis related PR-bl gene and localization of related protein during symbiotic endomycorrhizal interactions in tobacco roots. Endocytobiosis Cell Res 8: 177–185Google Scholar
  30. Giollant M, Guillot J, Damez M, Dusser M, Didier P, Didier E (1993) Characterization of a lectin from Lactarius deterrimus: research on the possible involvement of the fungal lectin in recognition between mushroom and spruce during the early stages of mycorrhiza formation. Plant Physiol 101: 513–522PubMedGoogle Scholar
  31. Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia 47: 331–340CrossRefGoogle Scholar
  32. Guttenberger M, Hampp R (1992) Ectomycorrhizins — symbiosis-specific orGoogle Scholar
  33. artifactual polypeptides from ectomycorrhizas? Planta 188:129–136Google Scholar
  34. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropenoid metabolism. Annu Rev Plant Physiol 40:347–369Google Scholar
  35. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  36. Hilbert JL (1989) Contribution à l’étude des interactions plantes-champignons ectomycorhiziens. Modifications de la biosynthèse des protéines au cours du développement de la symbiose Eucalyptus globulus-Pisolithus tinctorius. Thèse de Doctorat de l’Université de Nancy IGoogle Scholar
  37. Hilbert JL, Martin F (1988) Regulation of gene expression in ectomycorrhizas. I. Protein changes and the presence of ectomycorrhiza-specific polypeptides in the Pisolithus-Eucalyptus symbiosis. New Phytol 110: 339–346CrossRefGoogle Scholar
  38. Hilbert JL, Costa G, Martin F (1991) Regulation of gene expression in ectomycorrhizas. Early ectomycorrhizins and polypeptide cleansing in eucalypt ectomycorrhizas. Plant Physiol 97: 977–984PubMedCrossRefGoogle Scholar
  39. Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122: 211–237Google Scholar
  40. Holloway PJ, Arundel PH (1988) High-resolution two-dimensional electrophoresis of plant proteins. Anal Biochem 172: 8–15PubMedCrossRefGoogle Scholar
  41. Horan DP, Chilvers GA (1990) Chemotropism; the key to ectomycorrhizal formation? New Phytol 116: 297–301CrossRefGoogle Scholar
  42. Horan DP, Chilvers GA, Lapeyrie FF (1988) Time sequence of the infection process in eucalypt ectomycorrhizas. New Phytol 109: 451–458CrossRefGoogle Scholar
  43. Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81: 802–806PubMedCrossRefGoogle Scholar
  44. Ineichen K, Wiemken V (1992) Changes in the fungus-specific, soluble-carbohydrate pool during rapid and synchronous ectomycorrhiza formation of Picea abies with Pisolithus tinctorius. Mycorrhiza 2: 1–7CrossRefGoogle Scholar
  45. Jacobs PF, Peterson RL, Massicotte HB (1989) Altered fungal morphogenesis during early stages of ectomycorrhiza formation in Eucalyptus pilularis. Scanning Microsc 3: 249–255Google Scholar
  46. Kottke I, Oberwinkler F (1986) Root-fungus interactions observed on initial stages of mantle formation and Hartig net establishment in mycorrhizas of Amanita muscaria on Picea abies in pure culture. Can J Bot 64: 2348–2354CrossRefGoogle Scholar
  47. Kottke I, Oberwinkler F (1987) The cellular structure of the Hartig net: coenocytic and transfer cell-like organization. Nord J Bot 7: 85–95CrossRefGoogle Scholar
  48. Kottke I, Oberwinkler F (1989) Amplification of root-fungus interface in ectomycorrhizae by Hartig net architecture. Ann Sci For 46s: 737s - 740sCrossRefGoogle Scholar
  49. Kropp BR, McAfee BJ, Fortin JA (1987) Variable loss of ectomycorrhizal ability in monokaryotic and dikaryotic cultures of Laccaria bicolor. Can J Bot 65: 500–504CrossRefGoogle Scholar
  50. Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56: 215–224PubMedCrossRefGoogle Scholar
  51. Lamhamedi MS, Fortin A J, Kope HH, Kropp BR (1990) Genetic variation in ectomycorrhiza formation by Pisolithus arhizus on Pinus pinaster and Pinus banksiana. New Phytol 115: 689–697CrossRefGoogle Scholar
  52. Lapeyrie F, Lei J, Malajczuk N, Dexheimer J (1989) Ultrastructural and biochemical changes at the pre-infection stage of mycorrhizal formation by two isolates of Pisolithus tinctorius. Ann Sci For 46s: 754s - 757sCrossRefGoogle Scholar
  53. Lei J, Lapeyrie F, Malajczuk N, Dexheimer J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius (Pers.) Coker & Couch on roots of Eucalyptus urophylla S. T. Blake in vitro. II. Ultrastructural and biochemical changes at the early stage of mycorrhiza formation. New Phytol 116: 115–122CrossRefGoogle Scholar
  54. Lei J, Wong KKY, Piché Y (1991) Extracellular concanavalin A-binding sites during early interactions between Pinus banksiana and two closely related genotypes of the ectomycorrhizal basidiomycete Laccaria bicolor. Mycol Res 95: 357–363CrossRefGoogle Scholar
  55. Ling-Lee M, Chilvers GA, Ashford AE (1975) Polyphosphate granules in three different kinds of tree mycorrhiza. New Phytol 75: 551–554CrossRefGoogle Scholar
  56. Lynn DG, Chang M (1990) Phenolic signals in cohabitation: implications for plant development. Annu Rev Plant Physiol Plant Mol Biol 41: 497–526CrossRefGoogle Scholar
  57. Malajczuk N, Molina R, Trappe JM (1984) Ectomycorrhiza formation in Eucalyptus. II. The ultrastructure of compatible and incompatible mycorrhizal fungi and associated roots. New Phytol 96: 43, 53Google Scholar
  58. Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on roots of Eucalyptus urophylla in vitro. New Phytol 114: 627–631CrossRefGoogle Scholar
  59. Martin F, Botton B (1993) Nitrogen metabolism of ectomycorrhizal fungi and ectomycorrhiza. Adv Plant Pathol 9: 83–102Google Scholar
  60. Martin F, Hilbert JL (1991) Morphological, biochemical and molecular changes during ectomycorrhiza development. Experientia 47: 321–331CrossRefGoogle Scholar
  61. Martin F, Delaruelle C, Hilbert JL (1990) An improved ergosterol assay to estimate the fungal biomass in ectomycorrhizas. Mycol Res 94: 1059–1064CrossRefGoogle Scholar
  62. Martin F, Tommerup I, Tagu D (1994) Genetics of ectomycorrhizal fungi: progress and prospects. Plant Soil 159: 159–170Google Scholar
  63. Massicotte HB, Peterson RL, Ashford AE (1987) Ontogeny of Eucalyptus pilularisPisolithus tinctorius ectomycorrhizae. II. Transmission electron microscopy. Can J Bot 65: 1940–1947CrossRefGoogle Scholar
  64. Massicotte HB, Peterson RL, Melville LH (1989) Ontogeny of Alnus rubra — Alpova diplophloeus ectomycorrhizae. I. Light microscopy and scanning electron microscopy. Can J Bot 67: 191–200CrossRefGoogle Scholar
  65. Montoliu L, Rigau J, Puigdomènech P (1989) A tandem of a-tubulin genes preferentially expressed in radicular tissues from Zea mays. Plant Mol Biol 14: 1–15CrossRefGoogle Scholar
  66. Moore AEP, Massicotte HB, Peterson RL (1989) Ectomycorrhiza formation between Eucalyptus pilularis Sm. and Hydnangium carneum Wallr. in Dietr. New Phytol 112: 193–204Google Scholar
  67. Münzberger B, Heilemann J, Strack D, Kottke I, Oberwinkler F (1990) Phenolics of mycorrhizas and non mycorrhizal roots of Norway spruce. Planta 182: 142–148Google Scholar
  68. Murphy PL, Tassie A, Langridge P, Smith SE (1992) Isolation of Hordeum vulgare cv. “Galleon” and Glomus intraradices genes with differential expression during symbiosis. Int Symp Management of mycorrhizas, Perth, Western Australia, 28 Sept 2 Oct 1992, 158 ppGoogle Scholar
  69. Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesiculararbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microbiol 57: 434–439PubMedGoogle Scholar
  70. O’Farrell P (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021PubMedGoogle Scholar
  71. Pacovski RS (1989) Carbohydrate, protein and amino acid status of GlycineGlomus-Bradyrhizobium symbioses. Physiol Plant 75: 346–354CrossRefGoogle Scholar
  72. Piché Y, Peterson RL, Massicotte HB (1988) Host-fungus interactions in ectomycorrhizae. Cell to cell signals in plant, animal and microbial symbiosis. NATO ISI Ser H17: 55–71Google Scholar
  73. Rabani S, Chalot M, Botton B, Martin F (1992) Utilisation de l’alanine par les plantules d’eucalyptus associées au champignon ectomycorhizien Pisolithus tinctorius. Bull Acad Soc Lorraines Sci 31: 131–139Google Scholar
  74. Raudaskoski M, Sala V, Niini SS (1988) Structure and function of the cytoskeleton in filamentous fungi. Karstenia 28: 49–60Google Scholar
  75. Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83: 48–71CrossRefGoogle Scholar
  76. Renelt A, Colling C, Hahlbrock K, Nürnberger T, Parker JE, Sacks WR, Scheel D (1993) Studies on elicitor recognition and signal transduction in plant defence. J Exp Bot 44: 257–268Google Scholar
  77. Rigau J, Capellades M, Montoliu Ll, Torres MA, Romera C, Martinez-Izquierdo JA, Tagu D, Puigdomènech P (1993) Analysis of a maize a-tubulin gene promoter by transient expression and in transgenic tobacco plants. Plant J 4: 1043–1050CrossRefGoogle Scholar
  78. Rupp LA, Mudge KW, Negm FB (1989) Involvement of ethylene in ectomycorrhiza formation and dichotomous branching of roots of mugo pine seedlings. Can J Bot 67: 477–482CrossRefGoogle Scholar
  79. Sauter M, Hager A (1989) The mycorrhizal fungus Amanita muscaria induces chitinase activity in roots and in suspension-cultured cells of its host Picea abies. Planta 179: 61–66CrossRefGoogle Scholar
  80. Scheidegger C, Brunner I (1993) Freeze-fracturing for low-temperature scanning electron microscopy of Hartig net in synthesized Picea abies-Hebeloma crustuliniforme and Tricholoma vaccinum ectomycorrhizas. New Phytol 123: 123–132CrossRefGoogle Scholar
  81. Schwacke R, Hager A (1992) Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Cat+ and protein-kinase activity. Planta 187: 136–141CrossRefGoogle Scholar
  82. Silflow CD, Oppenheimer DG, Kopczak SD, Ploense SE, Ludwig SR, Haas N, Snustad DP (1987) Plant tubulin genes: structure and differential expression during development. Developmental Genetics 8: 435–460CrossRefGoogle Scholar
  83. Simoneau P, Viemont JD, Moreau JC, Strullu DG (1993) Symbiosis-related polypeptides associated with the early stages of ectomycorrhiza organogenesis in birch (Betula pendula Roth). New Phytol 124: 495–504CrossRefGoogle Scholar
  84. Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophicGoogle Scholar
  85. symbioses as they relate to nutrient transport. New Phytol 114:1–38Google Scholar
  86. Stringer MA, Timberlake WE (1993) Cerato-ulmin, a toxin involved in Dutch elmGoogle Scholar
  87. disease, is a fungal hydrophobin. Plant Cell 5:145–146Google Scholar
  88. Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodletless, a new Aspergillus developmental mutant induced by directed gene activation. Genes Devel 5: 1161–1171PubMedCrossRefGoogle Scholar
  89. Tagu D, Python M, Crétin C, Martin F (1993) Cloning symbiosis-related cDNAs from eucalypt ectomycorrhizas by PCR-assisted differential screening. New Phytol 125: 339–343CrossRefGoogle Scholar
  90. Timonen S, Finlay RD, Söserström B, Raudaskoski M (1993) Identification of cytoskeletal components in pine ectomycorrhizas. New Phytol 124: 83–92CrossRefGoogle Scholar
  91. Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57: 1485–1488PubMedGoogle Scholar
  92. Wessels JGH (1992) Gene expression during fruiting in Schizophyllum commune. Mycol Res 96: 609–620CrossRefGoogle Scholar
  93. Wessels JGH (1993) Wall growth, protein excretion and morphogenesis in fungi. New Phytol 123: 397–413CrossRefGoogle Scholar
  94. Wessels JGH, De Vries OMH, Asgeirsdottirs A, Schuren FHJ (1991) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3: 793–799PubMedGoogle Scholar
  95. Wiemken V, Ineichen K (1992) Effect of neutral and pathogenic fungi on mycorrhizal and non-mycorrhizal Picea roots: transpiration and accumulation of the stress metabolite aminocyclopropane carboxylic acid. J Plant Physiol 140: 605–610CrossRefGoogle Scholar
  96. Wong KK, Piché Y, Montpetit D, Kropp BR (1989) Differences in the colonization of Pinus banksiana roots by sib-monokaryotic and dikaryotic strains of ectomycorrhizal Laccaria bicolor. Can J Bot 67: 1717–1726CrossRefGoogle Scholar
  97. Wyss P, Mellor RB, Wiemken A (1990) Vesicular-arbuscular mycorrhizas of wild-type soybean and non-nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins), immunologically cross-reactive with nodulins. Planta 182: 22–26CrossRefGoogle Scholar
  98. Zivy M (1986) Influence des ampholytes sur la révélation des protéines au nitrate d’argent. In: Galteau MM, Siest G (eds) Recent progress in two-dimensional electrophoresis. Presses Universitaires de Nancy, pp 69–72Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • F. Martin
  • D. Tagu
    • 1
  1. 1.Institut National de la Recherche Agronomique, Centre de Recherches de NancyEquipe de Microbiologie ForestièreChampenouxFrance

Personalised recommendations