Skip to main content

Arbuscular Mycorrhizas in Sustainable Soil-Plant Systems

  • Chapter
Book cover Mycorrhiza

Abstract

The significance of mycorrhizas in sustainable agriculture was highlighted several years ago (Mosse 1986) when it was realized that the stability of these systems was endangered. More recently, Bethlenfalvay and Linderman (1992) have re-emphasized the importance of this plant-fungus symbiosis in the maintenance of sustainability in agricultural production. Due to their ability to alleviate the effects of plant stress (Jeffries 1987; Barea 1991), in this review we wish to discuss the role of arbuscular mycorrhizas as essential components of sustainable ecosystems in general, including agriculture. We will also consider some of the constraints on the practical application of mycorrhizal technology in these situations, but first it is necessary to briefly define the concept of sustainability and the problems endangering sustainable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott LK, Robson AD (1977) The distribution and abundance of vesiculararbuscular endophytes in some Western Australian soils. Aust J Bot 25: 515–522

    Article  Google Scholar 

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesiculararbuscular mycorrhizas Agric Ecosyst Environ 35: 121–150

    Article  Google Scholar 

  • Abbott LK, Robson AD, Gazey C (1992) Selection of inoculant vesicular-arbuscular mycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds), Methods in Microbiology, vol 24. Academic Press, London, pp 1–21

    Google Scholar 

  • Aldwell FED, Hall IR, Smith JMB (1985) Enzyme-linked immunosorbent assay as an aid to taxonomy of the Endogonaceae. Trans Br Mycol Soc 84: 399–412

    Article  Google Scholar 

  • Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93: 227–236

    Article  Google Scholar 

  • Allen EB, Chambers JC, Connor KF, Allen MF, Brown RW (1987) Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arct Alp Res 19: 11–20

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae Cambridge University Press, Cambridge

    Google Scholar 

  • Allen MF, Clouse SD, Weinbaum BS, Jeakins S, Friese CF, Allen EB (1992) Mycorrhizae and the integration of scales: from molecules to ecosystems. In: Allen MF (ed), Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 488–516

    Google Scholar 

  • Ames RN, Reid CPP, Porter LK, Canbardella C (1983) Hyphal uptake and transport of nitrogen from two 5N labelled sources by Glomus mosseae, a vesiculararbuscular mycorrhizal fungus. New Phytol 95: 381–396

    Article  Google Scholar 

  • Anderson RC, Liberta AE, Dickman LA (1984) Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture gradient. Oecologia 64: 111–117

    Article  Google Scholar 

  • Arias I, Koomen I, Dodd JC, White RP, Hayman DS (1991) Growth responses of mycorrhizal and non-mycorrhizal tropical forage species to different levels of soil phosphate. Plant Soil 132: 253–260

    CAS  Google Scholar 

  • Armes J, Vilarino A (1989) Use of nutrient: phosphorus ratios to evaluate the effects of vesicular-arbuscular mycorrhiza on nutrient uptake in unsterilized soils. Biol Fertil Soils 8: 293–297

    Google Scholar 

  • Armes J, Vilarino A (1991) Growth, micronutrient content and vesicular-arbuscular fungi infection of herbaceous plants on lignite mine spoils: a greenhouse pot experiment. Plant Soil 135: 269–273

    Article  Google Scholar 

  • Armes J, Vilarino A, Sainz M (1989) Effects of different inocula of vesiculararbuscular mycorrhizal fungi on manganese content and concentration in red clover (Trifolium pratense L.) plants. New Phytol 112: 215–219

    Article  Google Scholar 

  • Arines J, Porto ME, Vilarino A (1992) Effect of manganese on vesicular-arbuscular mycorrhizal development in red clover plants and on soil Mn-oxidizing bacteria. Mycorrhiza 1: 127–131

    Article  CAS  Google Scholar 

  • Augé RM, Stodola AJW (1990) An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol 115: 285–295

    Article  Google Scholar 

  • Azcón R, Barea JM (1992) The effect of vesicular-arbuscular mycorrhizae in decreasing Ca acquisition by alfalfa plants in calcareous soils. Biol Fertil Soils 13: 155–159

    Google Scholar 

  • Azcón R, El-Atrach F, Barea JM (1988) Influence of mycorrhiza vs. soluble phosphate on growth nodulation and N2 fixation (15N) in alfalfa under different levels of water potential. Biol Fertil Soils 7: 28–31

    Article  Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117: 399–404

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MI (ed), Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 163–198

    Google Scholar 

  • Azcón-Aguilar C, Azcón R, Barea JM (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 279: 325–327

    Article  Google Scholar 

  • Azcón-Aguilar C, Gianinazzi-Pearson V, Fardeau JC, Gianinazzi S (1986) Effect of vesicular-arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and nutrition of soybean in a neutral calcareous soil amended with 32P 45Ca tricalcium phosphate. Plant Soil 96: 17–29

    Article  Google Scholar 

  • Aziz T, Habte M (1989) Influence of inorganic N on mycorrhizal activity, nodulation and growth of Leucaena leucocephala in an oxisol subjected to simulated erosion. Commun. Soil Sci Plant Anal 20: 239–251

    Article  CAS  Google Scholar 

  • Bagyaraj DJ (1992) Vesicular-arbuscular mycorrhiza: application in agriculture. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 359–373

    Google Scholar 

  • Baltruschat H, Dehne HW (1988) The occurrence of vesicular-arbuscular mycorrhiza in agro-ecosystems. I. Influence of nitrogen fertilization and green manure in continuous monoculture and in crop rotation on the inoculum potential of winter wheat. Plant Soil 107: 279–284

    Article  Google Scholar 

  • Baltruschat H, Dehne HW (1989) The occurrence of vesicular-arbuscular mycorrhizal fungi in agro-ecosystems. II. Influence of nitrogen fertilization and green manure in continuous monoculture and in crop rotation on the inoculum potential of winter barley. Plant Soil 113: 251–256

    Article  Google Scholar 

  • Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Adv Soil Sci 15: 1–40

    Article  Google Scholar 

  • Barea JM, Azcón-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv Agron 36: 1–54

    Article  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1983) Interactions between phosphate solubilizing bacteria and VA mycorrhiza to improve the utilization of rock phosphate by plants in non acidic soils. In: 3rd Int Congr Phosphorus compounds, Brussels, pp 127–144

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1988) The role of mycorrhiza in improving the establishment and function of the Rhizobium-legume system under field conditions. In: Beck DP, Materon LA (eds), Nitrogen fixation by legumes in Mediterranean agriculture. ICARDA, Martinus Nijhoff, Dordrecht, pp 153–162

    Chapter  Google Scholar 

  • Barea JM, El-Atrach F, Azcón R (1989) Mycorrhiza and phosphate interactions as affecting plant development, N2 fixation, N-transfer and N-uptake from soil in legume-grass mixtures by using a 15N dilution technique. Soil Biol Biochem 21: 581–589

    Article  Google Scholar 

  • Barea JM, Salamanca CP, Herrera MA, Roldân-Fajardo BE (1990a) Las simbiosis microbio-planta en el establecimiento de una cubierta vegetal sobre suelos degradados. In: Albaladejo J, Stocking MA, Diaz E (eds), Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC, Murcia, pp 139–158

    Google Scholar 

  • Barea JM, Salamanca CP, Herrera MA (1990b) The role of VA mycorrhiza at improving N2-fixation by woody legumes in arid zones. In: Werner D, Müller P (eds), Fast growing trees and nitrogen fixing trees. Gustav Fischer, Stuttgart, pp 303–311

    Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1991) The role of vesicular-arbuscular mycorrhizae in improving plant N acquisition from soil as assessed with 15N Int Symp on the use of stable isotopes in plant nutrition, soil fertility and environmental studies IAEA, Vienna, pp 209–216

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1992a) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 391–416

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1992b) The use of 15N to assess the role of VA mycorrhiza in plant N nutrition and its application to evaluate the role of mycorrhiza in restoring mediterranean ecosystems. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds), Mycorrhizas in ecosystem CAB International, Cambridge, pp 190–197

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1993) Mycorrhiza and crops. Adv Plant Pathol 9: 167–189

    Google Scholar 

  • Batzli JM, Graves WR, van Berkum P (1992) Diversity among rhizobia effective with Robinia pseudoacacia L. Appl Environ Microbiol 58: 2137–2143

    Google Scholar 

  • Bentivenga SP, Hetrick BAD (1992) The effect of prairie management practices on mycorrhizal symbiosis. Mycologia 84: 522–527

    Article  Google Scholar 

  • Berthelin J, Leyval C, Laheurte F, De Giudice P (1991) Involvement of roots and rhizosphere microflora in the chemical weathering of soil minerals. In: Atkinson D (ed), Plant root growth and ecological perspective. Blackwell Oxford, pp 187–200

    Google Scholar 

  • Bethlenfalvay GJ (1992) Mycorrhizae and crop productivity. In: Bethlenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture. ASA Spec Publ, Madison, WI, pp 1–28

    Google Scholar 

  • Bethlenfalvay GJ, Franson RL (1989) Manganese toxicity alleviated by mycorrhizae in soybean. J Plant Nutr 12: 952–970

    Article  Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. ASA Spec Publ, Madison, WI, 124 pp

    Google Scholar 

  • Bethlenfalvay GJ, Dakessian S, Pacovsky RS (1984) Mycorrhizae in a southern California desert: ecological implications. Can J Bot 62: 519–524

    Article  Google Scholar 

  • Bethlenfalvay GJ, Thomas RS, Dakessian S, Brown MS, Ames RN (1988) Mycorrhizae in stressed environments: effects on plant growth, endophyte development, soil stability and soil water. In: Whitehead EE, Hutchinson CF, Timmermann BN, Varaday RG (eds), Arid lands today and tomorrow Westview Boulder, pp 105–1029

    Google Scholar 

  • Bethlenfalvay GJ, Brown MS, Franson RL, Mihara KL (1989) The Glycine-GlomusBradyrhizobium symbiosis IX. Nutritional, morphological and physiological responses of nodulated soybean to geographic isolates of the mycorrhizal fungus Glomus mosseae. Physiol Plant 76: 226–232

    Article  Google Scholar 

  • Bethlenfalvay GJ, Reyes-Solis MG, Camel SB, Ferrera-Cerrato R (1991) Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorhizal inoculum. Physiol Plant 82: 423–432

    Article  CAS  Google Scholar 

  • Black R, Tinker PB (1979) The development of endomycorrhizal root systems. II. Effect of agronomic factors and soil conditions on the development of vesiculararbuscular mycorrhizal infection in barley and on the endophyte spore density. New Phytol 83: 401–413

    Article  Google Scholar 

  • Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141: 1–11

    Article  CAS  Google Scholar 

  • Brechelt A (1987) Wirkung verschiedener organischer Dungemittel auf die Efficienz der VA-Mykorrhiza. J Agron Crop Sci 158: 280–286

    Article  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21: 171–313

    Article  Google Scholar 

  • Caesar K (1990) Developments in crop research for the Third World. Ambio 19: 353–357

    Google Scholar 

  • Calvet C, Pera J, Barea JM (1993) Growth response of marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviride and Pythium ultimum in a peat-perlite mixture. Plant Soil 148: 1–6

    Article  Google Scholar 

  • Carpenter AT, Allen MF (1988) Responses of Hedysarum borelae Nutt to mycorrhizas and Rhizobium: plant and soil nutrient changes in a disturbed shrub-steppe. New Phytol 109: 125–132

    Article  Google Scholar 

  • Cervantes E, Rodriguez-Barrueco C (1992) Relationships between the mycorrhizal and actinorhizal symbioses in non-legumes. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 417–432

    Google Scholar 

  • Chiariello N, Hickman JC, Mooney HA (1982) Endomycorrhizal role for inter-specific transfer of phosphorus in a community of annual plants. Science 217: 941–943

    Article  PubMed  CAS  Google Scholar 

  • Christie P, Kilpatrick DJ (1992) Vesicular-arbuscular mycorrhiza infection in cut grassland following long-term slurry application. Soil Biol Biochem 24: 325–330

    Article  Google Scholar 

  • Clapperton MJ, Raid DM, Parkinson D (1990) Effects of sulphur dioxide fumigation on Phleum pratense and vesicular-arbuscular mycorrhizal fungi. New Phytol 115: 465–469

    Article  CAS  Google Scholar 

  • Colonna JP, Thoen D, Ducousso M, Badji S (1991) Comparative effects of Glomus mosseae and P fertilizer on foliar mineral composition of Acacia senegal seedlings inoculated with Rhizobium. Mycorrhiza 1: 35–38

    Article  Google Scholar 

  • Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134: 88–119

    Article  Google Scholar 

  • Cooper KM (1984) Physiology of VA mycorrhizal associations. In: Powell CL, Bagyaraj DJ (eds), VA mycorrhiza. CRC, Boca Raton, pp 155–186

    Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesiculararbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81: 43–52

    Article  CAS  Google Scholar 

  • Crange AC, Brown VK, Farmer LM (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytol 115: 85–91

    Article  Google Scholar 

  • Crowley DE, Römheld V, Marschner H, Szaniszlo PJ (1992) Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant Soil 142: 1–7

    CAS  Google Scholar 

  • Daniels Hetrick BA, Bloom J (1983) Vesicular-arbuscular mycorrhizal fungi associated with native tall grass prairie and cultivated winter wheat. Can J Bot 61: 2140–2146

    Article  Google Scholar 

  • Danielson RM (1985) Mycorrhizae and reclamation of stressed terrestrial environments. In: Tate R, Klein DL (eds), Soil reclamation processes Marcel Dekker, New York, pp 173–201

    Google Scholar 

  • Danso SKA, Bowen GD, Sanginga N (1992) Biological nitrogen fixation in trees in agro-ecosystems. Plant Soil 141: 177–196

    Article  CAS  Google Scholar 

  • Dehne HW (1982) Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72: 1115–1119

    Google Scholar 

  • De La Cruz RE, Manalo MO, Aggangan NS, Tambalo JD (1988) Growth of three legume trees inoculated with VA mycorrhizal fungi and Rhizobium. Plant Soil 108: 111–115

    Article  Google Scholar 

  • De La Cruz RE, Lorilla EB, Aggangan NS (1990) Growth of Acacia auriculiformis and Acacia mangium in a marginal grassland in response to inoculations with VA mycorrhiza and/or Rhizobium. In: Werner D, Müller P (eds), Fast growing trees and nitrogen fixing trees Gustav Fischer, Stuttgart, 321 pp

    Google Scholar 

  • Dodd JC, Jeffries P (1986) Early development of vesicular-arbuscular mycorrhizas in autumn-sown cereals. Soil Biol Biochem 18: 149–154

    Article  Google Scholar 

  • Dodd JC, Jeffries P (1989a) Effects of herbicides on three vesicular-arbuscular fungi associated with winter wheat (Triticum aestivum L.). Biol Fertil Soils 7: 113–119

    Article  CAS  Google Scholar 

  • Dodd JC, Jeffries P (1989b) Effects of fungicides on three vesicular-arbuscular fungi associated with winter wheat (Triticum aestivum L.). Biol Fertil Soils 7: 120–128

    Article  CAS  Google Scholar 

  • Dodd JC, Burton CC, Burns RG, Jeffries P (1987) Phosphatase activity associated with the roots and rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 107: 163–172

    Article  CAS  Google Scholar 

  • Dodd JC, Arias I, Koomen I, Hayman DS (1990a) The management of populations of vesicular-arbuscular mycorrhizal fungi in acid-infertile soils of a savanna ecosystem I The effect of pre-cropping and inoculation with VAM-fungi on plant growth and nutrition in the field. Plant Soil 122: 229–240

    Article  CAS  Google Scholar 

  • Dodd JC, Arias I, Koomen I, Hayman DS (1990b) The management of populations of vesicular-arbuscular mycorrhizal fungi in acid-infertile soils of a savanna ecosystem II The effects of pre-cropping on the spore populations of native and introduced VAM-fungi. Plant Soil 122: 241–247

    Article  Google Scholar 

  • Douds DD Jr, Schenck NC (1991) Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol Biochem 23: 177–183

    Article  Google Scholar 

  • Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull 39: 23–32

    Google Scholar 

  • Evans DG, Miller MH (1988) Vesicular-arbuscular mycorrhiza and the soildisturbance-induced reduction of nutrient absorption in maize. New Phytol 110: 75–84

    Article  Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizal colonization of maize. New Phytol 114: 65–71

    Article  Google Scholar 

  • Faber BA, Zasoski RJ, Munns DA, Shackel K (1991) A method of measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69: 87–94

    Article  Google Scholar 

  • Fairchild GL, Miller MH (1988) Vesicular-arbuscular mycorrhizas and the soildisturbance-induced reduction of nutrient absorption in maize. II. Development of the effect. New Phytol 110: 75–84

    Article  Google Scholar 

  • Fairchild GL, Miller MH (1990) Vesicular-arbuscular mycorrhizas and the soildisturbance-induced reduction of nutrient absorption in maize. III. Influence of P amendments to soil. New Phytol 114: 641–650

    Article  CAS  Google Scholar 

  • Feldmann F, Idczak E (1992) Inoculum production of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 339–357

    Google Scholar 

  • Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99: 257–265

    Article  Google Scholar 

  • Fitter AH, Sanders IR (1992) Interactions with the soil fauna. In: Allen MF (ed), Mycorrhizal functioning: an integrative plant-fungal process Chapman & Hall, New York, pp 333–354

    Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307: 53–56

    Article  CAS  Google Scholar 

  • Francis R, Finlay RD, Read DJ (1986) Vesicular-arbuscular mycorrhiza in natural vegetation systems. IV. Transfer of nutrients in inter-and intra-specific combinations of host plants. New Phytol 102: 103–111

    Article  Google Scholar 

  • Francis CF, Thornes JB (1990) Matorral: erosion and reclamation. In: Albaladejo J, Stocking MA, Diaz E (eds), Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC, Murcia, pp 87–115

    Google Scholar 

  • Frey B, Schüepp H (1992) Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrium L.) to maize via vesicular arbuscular mycorrhizal hyphae. New Phytol 122: 447–454

    Article  CAS  Google Scholar 

  • Fujita K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141: 155–175

    Article  CAS  Google Scholar 

  • Furlan V, Bernier-Cardou M (1989) Effects of N, P, and K on formation of vesicular-arbuscular mycorrhizae, growth and mineral content of onion. Plant Soil 113: 167–174

    Article  CAS  Google Scholar 

  • Gange AC, Brown VK, Farmer LM (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytol 115: 85–91

    Article  Google Scholar 

  • GAO/RCED (1992) GAO/RCED 92–233 Sustainable Agriculture. United States Congress Food, Agriculture Conservation, and Trade Act of 1990, P. L. no 101624, Washington

    Google Scholar 

  • Garcia-Romera I, Garcia-Garrido JM, Martinez-Molina E, Ocampo JA (1990) Possible influence of hydrolytic enzymes on vesicular arbuscular mycorrhizal infection of alfalfa. Soil Biol Biochem 22: 149–152

    Article  CAS  Google Scholar 

  • Gardezi AK, Ferrera-Cerrato R (1989) The effect of four levels of phosphorus on mycorrhizal colonization, dry root weight, and nitrogen and phosphorus content of Acacia saligna inoculates with Rhizobium sp. and endomycorrhiza in a Mexican Andisol. Nitrogen Fixing Tree Res Rep 7: 43–45

    Google Scholar 

  • Gemma JN, Koske RE (1989) Field inoculation of American beach grass (Ammophila breviligulata) with V-A mycorrhizal fungi. J Environ Manage 29: 173–182

    Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (1989) Potentialities and procedures for the use of endomycorrhizas with special emphasis on high value crops. In: Whipps JM, Lumsden RD (eds), Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, pp 41–54

    Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328: 420–422

    Article  Google Scholar 

  • Gueye M, Diop T, Ndao B (1992) Acacia albida une legumineuse arborescente a fort potentiel mycorhizien et fixateur d’azote. In: IFS (ed), Interactions between plants and microorganisms. International Foundation for Science, Dakar, Senegal, pp 452–461

    Google Scholar 

  • Guidi G, Pera A, Giovannetti M, Poggio G, Bertoldi M (1988) Variations of soil structure and microbial population in a compost amended soil. Plant Soil 106: 113–119

    Article  Google Scholar 

  • Gupta VVSR, Germida JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 21: 777–786

    Article  Google Scholar 

  • Habte M, Fox RL, Aziz T, El-Swaify SA (1988) Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol. Appl Environ Microbiol 54: 945–950

    PubMed  CAS  Google Scholar 

  • Hale MG, Orcutt DM (1987) The physiology of plants under stress. Wiley Sons, New York, pp 71–92

    Google Scholar 

  • Hall IR (1980) Growth of Lotus pedunculatus Cav in an eroded soil containing soil pellets infested with endomycorrhizal fungi. NZJ Agric Res 23: 103–105

    Article  Google Scholar 

  • Hall IR, Mosgiel PB, Armstrong P (1979) Effect of vesicular-arbuscular mycorrhizas on growth of white clover, lotus and ryegrass in some eroded soils. NZJ Agric Res 22: 478–484

    Google Scholar 

  • Hamel C, Smith D (1991) Interspecific N-transfer and plant development in a mycorrhizal field grown mixture. Soil Biol Biochem 23: 661–665

    Article  Google Scholar 

  • Hamel C, Furlan V, Smith D (1991a) N2-fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant Soil 133: 177–185

    Article  CAS  Google Scholar 

  • Hamel C, Barrantes-Cartín U, Furlan V, Smith D (1991b) Endomycorrhizal fungi in nitrogen transfer from soybean to maize. Plant Soil 138: 33–40

    Article  CAS  Google Scholar 

  • Hamel C, Nesser C, Barrantes-Cartín U, Smith D (1991c) Endomycorrhizal fungal species mediate 15N transfer from soybean to maize in non-fumigated soil. Plant Soil 138: 41–47

    Article  CAS  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1988) Effect of crop rotation on native vesicular arbuscular mycorrhizal propagules. Plant Soil 110: 77–80

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Hayman DS, Barea JM, Azcón R (1976) Vesicular-arbuscular mycorrhiza in southern Spain: its distribution in crops growing in soil of different fertility. Phytopathol Mediterr 15: 1–6

    Google Scholar 

  • Heap Ai, Newman EI (1980) The influence of vesicular-arbuscular mycorrhizas on phosphorus transfer between plants. New Phytol 85: 173–179

    Article  Google Scholar 

  • Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22: 865–869

    Article  CAS  Google Scholar 

  • Hepper CM, Azcón-Aguilar C, Rosenthal S, Sen R (1988) Competition between three species of Glomus used as spacially separated introduced and indigenous mycorrhizal inocula for leek (Album porrum L.). New Phytol 110: 207–211

    Article  Google Scholar 

  • Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystems. Appl Environ Microbiol 59: 129–133

    PubMed  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Hartnett DC (1989) Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Can J Bot 67: 2608–2615

    Article  Google Scholar 

  • Hirrell MC, Gerdemann JW (1979) Enhanced carbon transfer between onion infected with a vesicular-arbuscular mycorrhizal fungus. New Phytol 83: 731–738

    Article  Google Scholar 

  • Howeler RH, Edwards DG, Asher CJ (1981) Application of the flowing solution culture techniques to studies involving mycorrhizas. Plant Soil 59: 179–183

    Article  CAS  Google Scholar 

  • Jabaji-Hare SH, Kendrick WB (1985) Effects of fosetyl-Al on root exudation and on composition of extracts of mycorrhizal and nonmycorrhizal leek roots. Can J Plant Pathol 7: 118–126

    Article  CAS  Google Scholar 

  • Jakobsen I (1986) Vesicular-arbuscular mycorrhiza in field-grown crops. III. Mycorrhizal infection and rates of phosphorus inflow in pea plants. New Phytol 103: 777–784

    Article  Google Scholar 

  • Jakobsen I, Nielsen NE (1983) Vesicular-arbuscular mycorrhiza in field grown crops 1 Mycorrhizal infection in cereals and peas at various times and soil depths. New Phytol 93: 401–413

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 1 Spread of hyphae and phosphorus inflow into roots. New Phytol 120: 371–380

    Article  CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 2 Hyphal transport of 32p over defined distances. New Phytol 120: 509–516

    Article  CAS  Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12: 56–64

    Article  Google Scholar 

  • Janos DP (1984) Tropical mycorrhizas, nutrient cycles and plant growth. In: Medina E, Mooney HA, Vazquez-Yanes C (eds), Physiological ecology of plants of the wet tropics. de Junk, The Hague, pp 327–345

    Google Scholar 

  • Jarstfer AG, Sylvia DM (1992) Inoculum production and inoculation strategies for vesicular-arbuscular mycorrhizal fungi. In: Blaine Metting F Jr (ed), Soil microbial ecology. Applications in agricultural and environmental management Marcel Dekker, New York, pp 349–377

    Google Scholar 

  • Jasper DA (1992) Management of mycorrhizas in revegetation Abst Int Symp Management. Mycorrhizas in Agric Hort Forestry Perth, Australia, 28th Sep-2nd Oct 1992, p 135

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989a) Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol 112: 93–99

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989b) Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112: 101–107

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989c) Acacias respond to additions of phosphorus and to inoculation with VA mycorrhizal fungi in soils stockpiled during mineral sand mining. Plant Soil 115: 99–108

    Article  CAS  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118: 471–476

    Article  Google Scholar 

  • Jastrow JD, Miller RM (1991) Methods for assessing the effects of biota on soil structure. Agric Ecosyst Environ 35: 279–303

    Article  Google Scholar 

  • Jeffries P (1987) Use of mycorrhizae in agriculture. CRC Crit Rev Biotechnol 5: 319–358

    Article  Google Scholar 

  • Jeffries P, Dodd JC (1991) The use of mycorrhizal inoculants in forestry and agriculture. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds), Handbook of applied mycology vol 1. Soil and plants Marcel Dekker, New York, pp 155–186

    Google Scholar 

  • Jeffries P, Spyropoulos T, Vardavarkis E (1988) Vesicular-arbuscular mycorrhizal status of various crops in different agricultural soils in northern Greece. Biol Fertil Soils 5: 333–337

    Article  Google Scholar 

  • Joffre R, Vacher J, de los LLanos C, Long G (1988) The dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor Syst 6: 71–96

    Google Scholar 

  • Johansen A, Jakobsen I, Jensen SE (1992) Hyphal transport of 15N labelled nitrogen by a vesicular arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122: 281–288

    Article  CAS  Google Scholar 

  • Johnson NC, Pfleger FL (1992) Vesicular-arbuscular mycorrhizae and cultural stress. In: Bethenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture ASA Spec Publ Madison, WI, pp 71–99

    Google Scholar 

  • Johnson CR, Copeland PJ, Crosskston RK, Pfleger FL (1992) Mycorrhizae: a possible explanation for yield decline associated with continuous cropping of corn and soybean. Agron J 84: 387–390

    Article  Google Scholar 

  • Kang BT, Wilson GF (1987) The development of alley cropping as a promising agroforestry technology. In: Steppler HA, Nair PKR (eds), Agroforestry, a decade of developmnet. ICRAF, Nairobi, Kenya, pp 227–243

    Google Scholar 

  • Kang BT, Reynolds L, Atta-Krah AN (1990) Alley farming. Adv Agron 43: 315–359

    Article  Google Scholar 

  • Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant Soil 141: 93–118

    Article  CAS  Google Scholar 

  • Kiernan JM, Hendrix JW, Maronek DM (1983) Endomycorrhizal fungi occurring on orphan strip mines in Kentucky. Can J Bot 61: 1798–1803

    Article  Google Scholar 

  • Kirda C, Danso SKA, Zapata F (1989) Temporal water stress effects on nodulation, nitrogen accumulation and growth of soybean. Plant Soil 102: 49–55

    Article  Google Scholar 

  • Kloepper JW (1992) Plant growth-promoting rhizobacteria as biological control agents. In: Blaine F, Metting J, Jr (eds), Soil microbial ecology. Applications in agriculture forestry and environmental management Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Dordrecht, pp 315–326

    Google Scholar 

  • Koomen I, McGrath SP, Giller KE (1990) Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge. Application. Soil Biol Biochem 22: 871–873

    Article  CAS  Google Scholar 

  • Koske RE (1975) Endogone spores in Australian sand dunes. Can J Bot 53:668–672

    Google Scholar 

  • Koske RE, Halvorson WL (1981) Ecological studies of vesicular-arbuscular mycorrhizae in a barrier sand dune. Can J Bot 59: 1413–1422

    Article  Google Scholar 

  • Koslowsky SD, Boerner REJ (1989) Interactive effects of aluminum, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L (Poaceae). Environ Pollut 61: 107–125

    Article  PubMed  CAS  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L) in a calcareous soil. New Phytol 116: 637–645

    Article  CAS  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991a) Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L). New Phytol 117: 648–655

    Article  Google Scholar 

  • Kothari SK, Marschner H, Römheld V (1991b) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131: 177–185

    Article  CAS  Google Scholar 

  • Kucey RMN, Paul EA (1983) Vesicular-arbuscular mycorrhizal spore populations in various Saskatchewan soils and the effect of inoculation with Glomus mosseae on faba bean growth on greenhouse and field trials. Can J Soil Sci 63: 87–95

    Article  Google Scholar 

  • Ladha JK (1992) Preface: role of biological nitrogen fixation in sustainable agriculture. Plant Soil 141:vii

    Google Scholar 

  • Lal R (1989) Conservation tillage for sustainable agriculture: tropics versus temperate environments. Adv Agron 42: 85–185

    Article  Google Scholar 

  • Lapeyrie FF, Chilvers GA (1985) An endomycorrhizae ectomycorrhizae succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol 100: 93–104

    Article  Google Scholar 

  • Le Houérou HN (1987) Indigenous shrubs and trees in the silvopastoral systems of Africa. In: Steppler HA, Nair PKR (eds), Agroforestry, a decade of development ICRAF, Nairobi, pp 139–147

    Google Scholar 

  • Le Tacon F, Harley JL (1990) Deforestation in the tropics and proposals to arrest it. Ambio 19: 372–378

    Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizal and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture. ASA Spec Publ, Madison, WI, pp 45–70

    Google Scholar 

  • López-Bermúdez F, Albaladejo J (1990) Factores ambientales de la degradación del suelo en el area mediterranea. In: Albaladejo J, Stocking MA, Díaz E (eds), Soil degradation and rehabilitation in mediterranean environmental conditions CSIC, Murcia, pp 15–45

    Google Scholar 

  • MacRae RJ, Hill SB, Mehuys GR, Henning J (1990) Farm-scale agronomic and economic conversion from conventional to sustainable agriculture. Adv Agron 43: 155–159

    Article  Google Scholar 

  • Manjunath A, Bagyaraj DJ, Gopala Gowda HS (1984) Dual inoculation with VA mycorrhiza and Rhizobium beneficial to Leucaena. Plant Soil 78: 445–448

    Article  Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94: 120–122

    Article  Google Scholar 

  • McNaughton SJ, Oesterheld M (1990) Extramatrical mycorrhizal abundance and grass nutrition in a tropical grazing ecosystem, the Serengeti National Park, Tanzania. Oikos 59: 92–96

    Article  Google Scholar 

  • Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular arbuscular mycorrhizal fungi and a plant growth promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18: 185–190

    Article  CAS  Google Scholar 

  • Michelsen A, Rosendahl S (1990) The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlings. Plant Soil 124: 7–13

    Article  CAS  Google Scholar 

  • Miller RM, Jastrow JD (1992a) The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen MF (ed), Mycorrhizal functioning an integrative plant fungal process. Chapman & Hall, New York, pp 438–467

    Google Scholar 

  • Miller RM, Jastrow JD (1992b) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture. ASA SpecPubl, Madison, WI, pp 29–44

    Google Scholar 

  • Morgan RPC, Rickson RJ, Wright W (1990) Regeneration of degraded soils. In: Albaladejo J, Stocking MA, Diaz E (eds), Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC Murcia, pp 69–85

    Google Scholar 

  • Mosse B (1986) Mycorrhiza in a sustainable agriculture. Biol Agric Hortic 3: 191–209

    Article  Google Scholar 

  • Mosse B, Stribley DP, Le Tacon F (1981) Ecology of mycorrhizae and mycorrhizal fungi. Adv Microb Ecol 5: 137–210

    Article  Google Scholar 

  • Mozafar A, Duss F, Oertly JJ (1992) Effect of Pseucomonas fluorescens on the root exudates of two tomato mutants differently sensitive to Fe chlorosis. Plant Soil 144: 167–176

    Article  CAS  Google Scholar 

  • Murgueitio E (1990) Intensive sustainable livestock production: an alternative to tropical deforestation. Ambio 19: 397–400

    Google Scholar 

  • Nelson CE (1986) The water relations of vesicular-arbuscular mycorrhizal systems. In: Safir GR (ed), Ecophysiology of VA mycorrhizal plants CRC, Boca Raton, pp 71–91

    Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18: 243–270

    Article  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76: 319–337

    Article  CAS  Google Scholar 

  • Ocampo JA (1980) Effect of crop rotations involving host and non-host plants on vesicular-arbuscular infection of host roots. Plant Soil 56: 283–291

    Article  Google Scholar 

  • Odum EP (1969) The strategy of ecosystem development. Science 165: 262–270

    Article  Google Scholar 

  • Ofori F, Stern WR (1987) Cereal-legume intercropping systems. Adv Agron 40: 41–48

    Article  Google Scholar 

  • Olivares J, Herrera MA, Bedmar EJ (1988) Woody legumes in arid and semi-arid zones: the Rhizobium-Prosopis chilensis symbiosis. In: Beck DP, Materon LA (eds), Nitrogen fixation legumes in mediterranean agriculture ICARDA, Martinus Nijhoff, Dordrecht, pp 65–72

    Chapter  Google Scholar 

  • Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU (1991) Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil 136: 131–143

    Article  Google Scholar 

  • Osunde AO (1992) Response of Gliricidia sepium to Rhizobium and VA-mycorrhizal fungi inoculation on an acid soil. In: IFS (ed), Interactions between plants and microorganisms. Dakar, Senegal, pp 156–164

    Google Scholar 

  • Pankow W, Boller T, Wiemkem A (1991) The siginificance of mycorrhizas in protective ecosystems. Experientia 47: 391–394

    Article  Google Scholar 

  • Pena JI, Sanchez-Diaz M, Aguirreolea J, Becana M (1988) Increased stress tolerance of nodule activity in the Medicago-Rhizobium-Glomus symbiosis under drought. J Plant Physiol 133: 79–83

    Article  Google Scholar 

  • Peoples MB, Craswell ET (1992) Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant Soil 141: 13–39

    Article  CAS  Google Scholar 

  • Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can J For Res 17: 929–940

    Article  Google Scholar 

  • Plaut Z, Grieve CM (1988) Photosynthesis of salt-stressed maize as influenced by Ca: Na ratios in the nutrient solution. Plant Soil 105: 283–286

    Article  CAS  Google Scholar 

  • Poss JA, Pond E, Menge JA, Jarrel WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88: 307–319

    Article  CAS  Google Scholar 

  • Puppi G, Tartaglini N (1991) Mycorrhizal types in three Mediterranean communities affected by fire to different extents. Acta Oecol 12: 295–304

    Google Scholar 

  • Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb 86B: 89–110

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88: 341–352

    Article  Google Scholar 

  • Read DJ, Koucheki HH, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. I. The occurrence of infection. New Phytol 77: 641–653

    Article  Google Scholar 

  • Reddell P, Spain AV (1991) Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23: 767–774

    Article  Google Scholar 

  • Reeves M (1992) The role of VAM fungi in nitrogen dynamics in maize-bean intercrops. Plant Soil 144: 85–92

    Article  Google Scholar 

  • Rosendahl CN, Rosendahl S (1991) Influence of vesicular arbuscular mycorrhizal fungi (Glomus spp) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31: 313–318

    Article  Google Scholar 

  • Rosendahl S, Sen R (1992) Isozyme analysis of mycorrhizal fungi and their mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 169–194

    Google Scholar 

  • Roskoski JP, Pepper I, Pardo E (1986) Inoculation of leguminous trees with rhizobia and VA mycorrhizal fungi. For Ecol Manage 16: 57–68

    Article  Google Scholar 

  • Rozycka M, Jeffries P, Dodd JC (1992) Immunological identification and characterization of arbuscular mycorrhizal fungi (AMF) Abst Int Symp Managern Mycorrhizas in Agric Hortic Forestry, Perth, Australia, 28th Sep-2nd Oct, 1992, p 159

    Google Scholar 

  • Sanginga N (1992) Nitrogen fixation by trees and its contribution to the nitrogen status of soils or associated crops. In: IFS (ed), Interactions between plants and microorganisms. International Foundation ofr Science Dakar, Senegal, pp 1432

    Google Scholar 

  • Saxerud MH, Funke BR (1991) Effects on plant growth of inoculation of stored stripmining topsoil in North Dakota with mycorrhizal fungi contained in native soils. Plant Soil 131: 135–141

    Google Scholar 

  • Schenck NC, Kinloch RA (1980) Incidence of mycorrhizal fungi on six field crops in monoculture on a newly cleared woodland site. Mycologia 72: 445–456

    Article  Google Scholar 

  • Schüepp H, Dehn B, Sticher H (1987) Interaktionen zwischen VA-Mykorrhizen und Schermetallbelastungen. Angew Bot 61: 85–96

    Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems Deutsche GTZ Eschborn, Germany, 371 pp

    Google Scholar 

  • Sieverding E, Howeler RH (1985) Influence of species of VA mycorrhizal fungi on cassava yield response to phosphorus fertilization. Plant Soil 88: 213–221

    Article  Google Scholar 

  • Sieverding E, Leihner DE (1984) Influence of crop rotation and intercropping of cassava with legumes on VA mycorrhizal symbiosis of cassava. Plant Soil 80: 143–146

    Article  Google Scholar 

  • Simpson D, Daft MJ (1990) Interactions between water-stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121: 179–186

    Article  Google Scholar 

  • Skujins J, Allen MF (1986) Use of mycorrhizae for land rehabilitation. MIRCEN J 2: 161–176

    Article  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39: 221–244

    Article  CAS  Google Scholar 

  • Sreenivasa MN, Bagyaraj DJ (1989) Use of pesticides for mass production of vesicular-arbuscular mycorrhizal inoculum. Plant Soil 119: 127–132

    Article  CAS  Google Scholar 

  • Stahl PD, Williams SE, Christensen M (1988) Efficacy of native vesicular -arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110: 347–354

    Article  Google Scholar 

  • Stribley DP (1989) Present and future value of mycorrhizal inoculants. In: Campbell R, MacDonald RM (eds), Microbial inoculation of crop plants. IRL Press, Oxford, pp 49–65

    Google Scholar 

  • Sylvia DM (1990) Inoculation of native woody plants with vesicular-arbuscular mycorrhizal fungi for phosphate mine land reclamation. Agric Ecosyst Environ 31: 253–261

    Article  Google Scholar 

  • Sylvia DM, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmental stresses. In: Bethlenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture ASA Spec Publ, Madison, WI, pp 101–124

    Google Scholar 

  • Sylvia DM, Hammond LC, Bennett JM, Haas JH, Linda SB (1993) Field response of maize to a VAM fungus and water management. Agron J 85 (in press)

    Google Scholar 

  • Thoen D (1987) First observations on the occurrence of vesicular-arbuscular mycorrhizae (VAM) in hydrophytes, hygrophytes, halophytes and xerophytes in the region of lake Retba (Cap-vert, Senegal) during the dry season. Mem Soc R Bot Belg 9: 60–66

    Google Scholar 

  • Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38: 847–867

    Article  CAS  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasiculatum in relation to root carbohydrates. New Phytol 103: 751–765

    Article  Google Scholar 

  • Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29: 729–743

    Article  Google Scholar 

  • Tisdall JM, Oades JM (1980) The effect of crop rotation on aggregation in a red-brown earth. Aust J Soil Res 18: 423–433

    Article  CAS  Google Scholar 

  • Tommerup IC (1988) The vesicular arbuscular mycorrhizas. Adv Plant Pathol 6: 81–92

    Google Scholar 

  • Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Annu Rev Phytopathol 22: 331–359

    Article  CAS  Google Scholar 

  • Van Kessel C, Singleton PW, Hoben H (1985) Enhanced nitrogen-transfer from a soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungi. Plant Physiol 79: 562–563

    Article  PubMed  Google Scholar 

  • Veenendaal EM, Monnaapula SC, Gilika T, Magole IL (1992) Vesicular-arbuscular mycorrhizal infection of grass seedlings in a degraded semi-arid savanna in Botswana. New Phytol 121: 477–485

    Article  Google Scholar 

  • Vilarino A, Arines J (1991) Numbers and viability of vesicular-arbuscular fungal propagules in field soil samples after wildfire. Soil Biol Biochem 23: 1083–1087

    Article  Google Scholar 

  • Walker C, Mize CW, McNabb HS Jr (1982) Populations of endogonaceous fungi at two locations in central Iowa. Can J Bot 60: 2518–2529

    Article  Google Scholar 

  • Whittingham J, Read DJ (1982) Vesicular-arbuscular mycorrhizae in natural vegetation systems III Nutrient transfer between plants with mycorrhizal interconnections. New Phytol 97: 413–426

    Google Scholar 

  • Wood TE (1991) VA mycorrhizal fungi: challenges for commercialization. In: Arora DK, Mukerji KG, Elander RP (eds), Handbook of applied mycology, vol 4, Biotechnology. Dekker, New York, pp 823–847

    Google Scholar 

  • Wright SF, Morton JB, Sworobuk JE (1987) Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay. Appl Environ Microbiol 53: 2222–2225

    PubMed  CAS  Google Scholar 

  • Wyss P, Bonfante P (1992) Amplification of genomic DNA of arbuscular-mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycol Research 97: 1351–1357

    Article  Google Scholar 

  • Zak JC, Parkinson D (1983) Effects of surface amendation of two mine spoils in Alberta, Canada on vesicular-arbuscular mycorrhizal development of slender wheatgrass: a 4 year study. Can J Bot 61: 798–803

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barea, J.M., Jeffries, P. (1995). Arbuscular Mycorrhizas in Sustainable Soil-Plant Systems. In: Varma, A., Hock, B. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08897-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08897-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08899-9

  • Online ISBN: 978-3-662-08897-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics