Mycorrhiza pp 521-560 | Cite as

Arbuscular Mycorrhizas in Sustainable Soil-Plant Systems

  • J. M. Barea
  • P. Jeffries


The significance of mycorrhizas in sustainable agriculture was highlighted several years ago (Mosse 1986) when it was realized that the stability of these systems was endangered. More recently, Bethlenfalvay and Linderman (1992) have re-emphasized the importance of this plant-fungus symbiosis in the maintenance of sustainability in agricultural production. Due to their ability to alleviate the effects of plant stress (Jeffries 1987; Barea 1991), in this review we wish to discuss the role of arbuscular mycorrhizas as essential components of sustainable ecosystems in general, including agriculture. We will also consider some of the constraints on the practical application of mycorrhizal technology in these situations, but first it is necessary to briefly define the concept of sustainability and the problems endangering sustainable systems.


Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhizal Mycorrhizal Fungus Plant Soil Arbuscular Mycorrhiza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott LK, Robson AD (1977) The distribution and abundance of vesiculararbuscular endophytes in some Western Australian soils. Aust J Bot 25: 515–522CrossRefGoogle Scholar
  2. Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesiculararbuscular mycorrhizas Agric Ecosyst Environ 35: 121–150CrossRefGoogle Scholar
  3. Abbott LK, Robson AD, Gazey C (1992) Selection of inoculant vesicular-arbuscular mycorrhizal fungi. In: Norris JR, Read DJ, Varma AK (eds), Methods in Microbiology, vol 24. Academic Press, London, pp 1–21Google Scholar
  4. Aldwell FED, Hall IR, Smith JMB (1985) Enzyme-linked immunosorbent assay as an aid to taxonomy of the Endogonaceae. Trans Br Mycol Soc 84: 399–412CrossRefGoogle Scholar
  5. Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93: 227–236CrossRefGoogle Scholar
  6. Allen EB, Chambers JC, Connor KF, Allen MF, Brown RW (1987) Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arct Alp Res 19: 11–20CrossRefGoogle Scholar
  7. Allen MF (1991) The ecology of mycorrhizae Cambridge University Press, CambridgeGoogle Scholar
  8. Allen MF, Clouse SD, Weinbaum BS, Jeakins S, Friese CF, Allen EB (1992) Mycorrhizae and the integration of scales: from molecules to ecosystems. In: Allen MF (ed), Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 488–516Google Scholar
  9. Ames RN, Reid CPP, Porter LK, Canbardella C (1983) Hyphal uptake and transport of nitrogen from two 5N labelled sources by Glomus mosseae, a vesiculararbuscular mycorrhizal fungus. New Phytol 95: 381–396CrossRefGoogle Scholar
  10. Anderson RC, Liberta AE, Dickman LA (1984) Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil moisture gradient. Oecologia 64: 111–117CrossRefGoogle Scholar
  11. Arias I, Koomen I, Dodd JC, White RP, Hayman DS (1991) Growth responses of mycorrhizal and non-mycorrhizal tropical forage species to different levels of soil phosphate. Plant Soil 132: 253–260Google Scholar
  12. Armes J, Vilarino A (1989) Use of nutrient: phosphorus ratios to evaluate the effects of vesicular-arbuscular mycorrhiza on nutrient uptake in unsterilized soils. Biol Fertil Soils 8: 293–297Google Scholar
  13. Armes J, Vilarino A (1991) Growth, micronutrient content and vesicular-arbuscular fungi infection of herbaceous plants on lignite mine spoils: a greenhouse pot experiment. Plant Soil 135: 269–273CrossRefGoogle Scholar
  14. Armes J, Vilarino A, Sainz M (1989) Effects of different inocula of vesiculararbuscular mycorrhizal fungi on manganese content and concentration in red clover (Trifolium pratense L.) plants. New Phytol 112: 215–219CrossRefGoogle Scholar
  15. Arines J, Porto ME, Vilarino A (1992) Effect of manganese on vesicular-arbuscular mycorrhizal development in red clover plants and on soil Mn-oxidizing bacteria. Mycorrhiza 1: 127–131CrossRefGoogle Scholar
  16. Augé RM, Stodola AJW (1990) An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytol 115: 285–295CrossRefGoogle Scholar
  17. Azcón R, Barea JM (1992) The effect of vesicular-arbuscular mycorrhizae in decreasing Ca acquisition by alfalfa plants in calcareous soils. Biol Fertil Soils 13: 155–159Google Scholar
  18. Azcón R, El-Atrach F, Barea JM (1988) Influence of mycorrhiza vs. soluble phosphate on growth nodulation and N2 fixation (15N) in alfalfa under different levels of water potential. Biol Fertil Soils 7: 28–31CrossRefGoogle Scholar
  19. Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117: 399–404CrossRefGoogle Scholar
  20. Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MI (ed), Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 163–198Google Scholar
  21. Azcón-Aguilar C, Azcón R, Barea JM (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 279: 325–327CrossRefGoogle Scholar
  22. Azcón-Aguilar C, Gianinazzi-Pearson V, Fardeau JC, Gianinazzi S (1986) Effect of vesicular-arbuscular mycorrhizal fungi and phosphate solubilizing bacteria on growth and nutrition of soybean in a neutral calcareous soil amended with 32P 45Ca tricalcium phosphate. Plant Soil 96: 17–29CrossRefGoogle Scholar
  23. Aziz T, Habte M (1989) Influence of inorganic N on mycorrhizal activity, nodulation and growth of Leucaena leucocephala in an oxisol subjected to simulated erosion. Commun. Soil Sci Plant Anal 20: 239–251CrossRefGoogle Scholar
  24. Bagyaraj DJ (1992) Vesicular-arbuscular mycorrhiza: application in agriculture. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 359–373Google Scholar
  25. Baltruschat H, Dehne HW (1988) The occurrence of vesicular-arbuscular mycorrhiza in agro-ecosystems. I. Influence of nitrogen fertilization and green manure in continuous monoculture and in crop rotation on the inoculum potential of winter wheat. Plant Soil 107: 279–284CrossRefGoogle Scholar
  26. Baltruschat H, Dehne HW (1989) The occurrence of vesicular-arbuscular mycorrhizal fungi in agro-ecosystems. II. Influence of nitrogen fertilization and green manure in continuous monoculture and in crop rotation on the inoculum potential of winter barley. Plant Soil 113: 251–256CrossRefGoogle Scholar
  27. Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Adv Soil Sci 15: 1–40CrossRefGoogle Scholar
  28. Barea JM, Azcón-Aguilar C (1983) Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv Agron 36: 1–54CrossRefGoogle Scholar
  29. Barea JM, Azcón R, Azcón-Aguilar C (1983) Interactions between phosphate solubilizing bacteria and VA mycorrhiza to improve the utilization of rock phosphate by plants in non acidic soils. In: 3rd Int Congr Phosphorus compounds, Brussels, pp 127–144Google Scholar
  30. Barea JM, Azcón R, Azcón-Aguilar C (1988) The role of mycorrhiza in improving the establishment and function of the Rhizobium-legume system under field conditions. In: Beck DP, Materon LA (eds), Nitrogen fixation by legumes in Mediterranean agriculture. ICARDA, Martinus Nijhoff, Dordrecht, pp 153–162CrossRefGoogle Scholar
  31. Barea JM, El-Atrach F, Azcón R (1989) Mycorrhiza and phosphate interactions as affecting plant development, N2 fixation, N-transfer and N-uptake from soil in legume-grass mixtures by using a 15N dilution technique. Soil Biol Biochem 21: 581–589CrossRefGoogle Scholar
  32. Barea JM, Salamanca CP, Herrera MA, Roldân-Fajardo BE (1990a) Las simbiosis microbio-planta en el establecimiento de una cubierta vegetal sobre suelos degradados. In: Albaladejo J, Stocking MA, Diaz E (eds), Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC, Murcia, pp 139–158Google Scholar
  33. Barea JM, Salamanca CP, Herrera MA (1990b) The role of VA mycorrhiza at improving N2-fixation by woody legumes in arid zones. In: Werner D, Müller P (eds), Fast growing trees and nitrogen fixing trees. Gustav Fischer, Stuttgart, pp 303–311Google Scholar
  34. Barea JM, Azcón-Aguilar C, Azcón R (1991) The role of vesicular-arbuscular mycorrhizae in improving plant N acquisition from soil as assessed with 15N Int Symp on the use of stable isotopes in plant nutrition, soil fertility and environmental studies IAEA, Vienna, pp 209–216Google Scholar
  35. Barea JM, Azcón R, Azcón-Aguilar C (1992a) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 391–416Google Scholar
  36. Barea JM, Azcón R, Azcón-Aguilar C (1992b) The use of 15N to assess the role of VA mycorrhiza in plant N nutrition and its application to evaluate the role of mycorrhiza in restoring mediterranean ecosystems. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds), Mycorrhizas in ecosystem CAB International, Cambridge, pp 190–197Google Scholar
  37. Barea JM, Azcón R, Azcón-Aguilar C (1993) Mycorrhiza and crops. Adv Plant Pathol 9: 167–189Google Scholar
  38. Batzli JM, Graves WR, van Berkum P (1992) Diversity among rhizobia effective with Robinia pseudoacacia L. Appl Environ Microbiol 58: 2137–2143Google Scholar
  39. Bentivenga SP, Hetrick BAD (1992) The effect of prairie management practices on mycorrhizal symbiosis. Mycologia 84: 522–527CrossRefGoogle Scholar
  40. Berthelin J, Leyval C, Laheurte F, De Giudice P (1991) Involvement of roots and rhizosphere microflora in the chemical weathering of soil minerals. In: Atkinson D (ed), Plant root growth and ecological perspective. Blackwell Oxford, pp 187–200Google Scholar
  41. Bethlenfalvay GJ (1992) Mycorrhizae and crop productivity. In: Bethlenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture. ASA Spec Publ, Madison, WI, pp 1–28Google Scholar
  42. Bethlenfalvay GJ, Franson RL (1989) Manganese toxicity alleviated by mycorrhizae in soybean. J Plant Nutr 12: 952–970CrossRefGoogle Scholar
  43. Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. ASA Spec Publ, Madison, WI, 124 ppGoogle Scholar
  44. Bethlenfalvay GJ, Dakessian S, Pacovsky RS (1984) Mycorrhizae in a southern California desert: ecological implications. Can J Bot 62: 519–524CrossRefGoogle Scholar
  45. Bethlenfalvay GJ, Thomas RS, Dakessian S, Brown MS, Ames RN (1988) Mycorrhizae in stressed environments: effects on plant growth, endophyte development, soil stability and soil water. In: Whitehead EE, Hutchinson CF, Timmermann BN, Varaday RG (eds), Arid lands today and tomorrow Westview Boulder, pp 105–1029Google Scholar
  46. Bethlenfalvay GJ, Brown MS, Franson RL, Mihara KL (1989) The Glycine-GlomusBradyrhizobium symbiosis IX. Nutritional, morphological and physiological responses of nodulated soybean to geographic isolates of the mycorrhizal fungus Glomus mosseae. Physiol Plant 76: 226–232CrossRefGoogle Scholar
  47. Bethlenfalvay GJ, Reyes-Solis MG, Camel SB, Ferrera-Cerrato R (1991) Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorhizal inoculum. Physiol Plant 82: 423–432CrossRefGoogle Scholar
  48. Black R, Tinker PB (1979) The development of endomycorrhizal root systems. II. Effect of agronomic factors and soil conditions on the development of vesiculararbuscular mycorrhizal infection in barley and on the endophyte spore density. New Phytol 83: 401–413CrossRefGoogle Scholar
  49. Bohlool BB, Ladha JK, Garrity DP, George T (1992) Biological nitrogen fixation for sustainable agriculture: a perspective. Plant Soil 141: 1–11CrossRefGoogle Scholar
  50. Brechelt A (1987) Wirkung verschiedener organischer Dungemittel auf die Efficienz der VA-Mykorrhiza. J Agron Crop Sci 158: 280–286CrossRefGoogle Scholar
  51. Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21: 171–313CrossRefGoogle Scholar
  52. Caesar K (1990) Developments in crop research for the Third World. Ambio 19: 353–357Google Scholar
  53. Calvet C, Pera J, Barea JM (1993) Growth response of marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviride and Pythium ultimum in a peat-perlite mixture. Plant Soil 148: 1–6CrossRefGoogle Scholar
  54. Carpenter AT, Allen MF (1988) Responses of Hedysarum borelae Nutt to mycorrhizas and Rhizobium: plant and soil nutrient changes in a disturbed shrub-steppe. New Phytol 109: 125–132CrossRefGoogle Scholar
  55. Cervantes E, Rodriguez-Barrueco C (1992) Relationships between the mycorrhizal and actinorhizal symbioses in non-legumes. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 417–432Google Scholar
  56. Chiariello N, Hickman JC, Mooney HA (1982) Endomycorrhizal role for inter-specific transfer of phosphorus in a community of annual plants. Science 217: 941–943PubMedCrossRefGoogle Scholar
  57. Christie P, Kilpatrick DJ (1992) Vesicular-arbuscular mycorrhiza infection in cut grassland following long-term slurry application. Soil Biol Biochem 24: 325–330CrossRefGoogle Scholar
  58. Clapperton MJ, Raid DM, Parkinson D (1990) Effects of sulphur dioxide fumigation on Phleum pratense and vesicular-arbuscular mycorrhizal fungi. New Phytol 115: 465–469CrossRefGoogle Scholar
  59. Colonna JP, Thoen D, Ducousso M, Badji S (1991) Comparative effects of Glomus mosseae and P fertilizer on foliar mineral composition of Acacia senegal seedlings inoculated with Rhizobium. Mycorrhiza 1: 35–38CrossRefGoogle Scholar
  60. Connell JH, Lowman MD (1989) Low-diversity tropical rain forests: some possible mechanisms for their existence. Am Nat 134: 88–119CrossRefGoogle Scholar
  61. Cooper KM (1984) Physiology of VA mycorrhizal associations. In: Powell CL, Bagyaraj DJ (eds), VA mycorrhiza. CRC, Boca Raton, pp 155–186Google Scholar
  62. Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesiculararbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81: 43–52CrossRefGoogle Scholar
  63. Crange AC, Brown VK, Farmer LM (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytol 115: 85–91CrossRefGoogle Scholar
  64. Crowley DE, Römheld V, Marschner H, Szaniszlo PJ (1992) Root-microbial effects on plant iron uptake from siderophores and phytosiderophores. Plant Soil 142: 1–7Google Scholar
  65. Daniels Hetrick BA, Bloom J (1983) Vesicular-arbuscular mycorrhizal fungi associated with native tall grass prairie and cultivated winter wheat. Can J Bot 61: 2140–2146CrossRefGoogle Scholar
  66. Danielson RM (1985) Mycorrhizae and reclamation of stressed terrestrial environments. In: Tate R, Klein DL (eds), Soil reclamation processes Marcel Dekker, New York, pp 173–201Google Scholar
  67. Danso SKA, Bowen GD, Sanginga N (1992) Biological nitrogen fixation in trees in agro-ecosystems. Plant Soil 141: 177–196CrossRefGoogle Scholar
  68. Dehne HW (1982) Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72: 1115–1119Google Scholar
  69. De La Cruz RE, Manalo MO, Aggangan NS, Tambalo JD (1988) Growth of three legume trees inoculated with VA mycorrhizal fungi and Rhizobium. Plant Soil 108: 111–115CrossRefGoogle Scholar
  70. De La Cruz RE, Lorilla EB, Aggangan NS (1990) Growth of Acacia auriculiformis and Acacia mangium in a marginal grassland in response to inoculations with VA mycorrhiza and/or Rhizobium. In: Werner D, Müller P (eds), Fast growing trees and nitrogen fixing trees Gustav Fischer, Stuttgart, 321 ppGoogle Scholar
  71. Dodd JC, Jeffries P (1986) Early development of vesicular-arbuscular mycorrhizas in autumn-sown cereals. Soil Biol Biochem 18: 149–154CrossRefGoogle Scholar
  72. Dodd JC, Jeffries P (1989a) Effects of herbicides on three vesicular-arbuscular fungi associated with winter wheat (Triticum aestivum L.). Biol Fertil Soils 7: 113–119CrossRefGoogle Scholar
  73. Dodd JC, Jeffries P (1989b) Effects of fungicides on three vesicular-arbuscular fungi associated with winter wheat (Triticum aestivum L.). Biol Fertil Soils 7: 120–128CrossRefGoogle Scholar
  74. Dodd JC, Burton CC, Burns RG, Jeffries P (1987) Phosphatase activity associated with the roots and rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 107: 163–172CrossRefGoogle Scholar
  75. Dodd JC, Arias I, Koomen I, Hayman DS (1990a) The management of populations of vesicular-arbuscular mycorrhizal fungi in acid-infertile soils of a savanna ecosystem I The effect of pre-cropping and inoculation with VAM-fungi on plant growth and nutrition in the field. Plant Soil 122: 229–240CrossRefGoogle Scholar
  76. Dodd JC, Arias I, Koomen I, Hayman DS (1990b) The management of populations of vesicular-arbuscular mycorrhizal fungi in acid-infertile soils of a savanna ecosystem II The effects of pre-cropping on the spore populations of native and introduced VAM-fungi. Plant Soil 122: 241–247CrossRefGoogle Scholar
  77. Douds DD Jr, Schenck NC (1991) Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol Biochem 23: 177–183CrossRefGoogle Scholar
  78. Elliott ET, Coleman DC (1988) Let the soil work for us. Ecol Bull 39: 23–32Google Scholar
  79. Evans DG, Miller MH (1988) Vesicular-arbuscular mycorrhiza and the soildisturbance-induced reduction of nutrient absorption in maize. New Phytol 110: 75–84CrossRefGoogle Scholar
  80. Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular-arbuscular mycorrhizal colonization of maize. New Phytol 114: 65–71CrossRefGoogle Scholar
  81. Faber BA, Zasoski RJ, Munns DA, Shackel K (1991) A method of measuring hyphal nutrient and water uptake in mycorrhizal plants. Can J Bot 69: 87–94CrossRefGoogle Scholar
  82. Fairchild GL, Miller MH (1988) Vesicular-arbuscular mycorrhizas and the soildisturbance-induced reduction of nutrient absorption in maize. II. Development of the effect. New Phytol 110: 75–84CrossRefGoogle Scholar
  83. Fairchild GL, Miller MH (1990) Vesicular-arbuscular mycorrhizas and the soildisturbance-induced reduction of nutrient absorption in maize. III. Influence of P amendments to soil. New Phytol 114: 641–650CrossRefGoogle Scholar
  84. Feldmann F, Idczak E (1992) Inoculum production of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 339–357Google Scholar
  85. Fitter AH (1985) Functioning of vesicular-arbuscular mycorrhizas under field conditions. New Phytol 99: 257–265CrossRefGoogle Scholar
  86. Fitter AH, Sanders IR (1992) Interactions with the soil fauna. In: Allen MF (ed), Mycorrhizal functioning: an integrative plant-fungal process Chapman & Hall, New York, pp 333–354Google Scholar
  87. Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307: 53–56CrossRefGoogle Scholar
  88. Francis R, Finlay RD, Read DJ (1986) Vesicular-arbuscular mycorrhiza in natural vegetation systems. IV. Transfer of nutrients in inter-and intra-specific combinations of host plants. New Phytol 102: 103–111CrossRefGoogle Scholar
  89. Francis CF, Thornes JB (1990) Matorral: erosion and reclamation. In: Albaladejo J, Stocking MA, Diaz E (eds), Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC, Murcia, pp 87–115Google Scholar
  90. Frey B, Schüepp H (1992) Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrium L.) to maize via vesicular arbuscular mycorrhizal hyphae. New Phytol 122: 447–454CrossRefGoogle Scholar
  91. Fujita K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141: 155–175CrossRefGoogle Scholar
  92. Furlan V, Bernier-Cardou M (1989) Effects of N, P, and K on formation of vesicular-arbuscular mycorrhizae, growth and mineral content of onion. Plant Soil 113: 167–174CrossRefGoogle Scholar
  93. Gange AC, Brown VK, Farmer LM (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytol 115: 85–91CrossRefGoogle Scholar
  94. GAO/RCED (1992) GAO/RCED 92–233 Sustainable Agriculture. United States Congress Food, Agriculture Conservation, and Trade Act of 1990, P. L. no 101624, WashingtonGoogle Scholar
  95. Garcia-Romera I, Garcia-Garrido JM, Martinez-Molina E, Ocampo JA (1990) Possible influence of hydrolytic enzymes on vesicular arbuscular mycorrhizal infection of alfalfa. Soil Biol Biochem 22: 149–152CrossRefGoogle Scholar
  96. Gardezi AK, Ferrera-Cerrato R (1989) The effect of four levels of phosphorus on mycorrhizal colonization, dry root weight, and nitrogen and phosphorus content of Acacia saligna inoculates with Rhizobium sp. and endomycorrhiza in a Mexican Andisol. Nitrogen Fixing Tree Res Rep 7: 43–45Google Scholar
  97. Gemma JN, Koske RE (1989) Field inoculation of American beach grass (Ammophila breviligulata) with V-A mycorrhizal fungi. J Environ Manage 29: 173–182Google Scholar
  98. Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (1989) Potentialities and procedures for the use of endomycorrhizas with special emphasis on high value crops. In: Whipps JM, Lumsden RD (eds), Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, pp 41–54Google Scholar
  99. Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328: 420–422CrossRefGoogle Scholar
  100. Gueye M, Diop T, Ndao B (1992) Acacia albida une legumineuse arborescente a fort potentiel mycorhizien et fixateur d’azote. In: IFS (ed), Interactions between plants and microorganisms. International Foundation for Science, Dakar, Senegal, pp 452–461Google Scholar
  101. Guidi G, Pera A, Giovannetti M, Poggio G, Bertoldi M (1988) Variations of soil structure and microbial population in a compost amended soil. Plant Soil 106: 113–119CrossRefGoogle Scholar
  102. Gupta VVSR, Germida JJ (1988) Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation. Soil Biol Biochem 21: 777–786CrossRefGoogle Scholar
  103. Habte M, Fox RL, Aziz T, El-Swaify SA (1988) Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol. Appl Environ Microbiol 54: 945–950PubMedGoogle Scholar
  104. Hale MG, Orcutt DM (1987) The physiology of plants under stress. Wiley Sons, New York, pp 71–92Google Scholar
  105. Hall IR (1980) Growth of Lotus pedunculatus Cav in an eroded soil containing soil pellets infested with endomycorrhizal fungi. NZJ Agric Res 23: 103–105CrossRefGoogle Scholar
  106. Hall IR, Mosgiel PB, Armstrong P (1979) Effect of vesicular-arbuscular mycorrhizas on growth of white clover, lotus and ryegrass in some eroded soils. NZJ Agric Res 22: 478–484Google Scholar
  107. Hamel C, Smith D (1991) Interspecific N-transfer and plant development in a mycorrhizal field grown mixture. Soil Biol Biochem 23: 661–665CrossRefGoogle Scholar
  108. Hamel C, Furlan V, Smith D (1991a) N2-fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant Soil 133: 177–185CrossRefGoogle Scholar
  109. Hamel C, Barrantes-Cartín U, Furlan V, Smith D (1991b) Endomycorrhizal fungi in nitrogen transfer from soybean to maize. Plant Soil 138: 33–40CrossRefGoogle Scholar
  110. Hamel C, Nesser C, Barrantes-Cartín U, Smith D (1991c) Endomycorrhizal fungal species mediate 15N transfer from soybean to maize in non-fumigated soil. Plant Soil 138: 41–47CrossRefGoogle Scholar
  111. Harinikumar KM, Bagyaraj DJ (1988) Effect of crop rotation on native vesicular arbuscular mycorrhizal propagules. Plant Soil 110: 77–80CrossRefGoogle Scholar
  112. Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, New YorkGoogle Scholar
  113. Hayman DS, Barea JM, Azcón R (1976) Vesicular-arbuscular mycorrhiza in southern Spain: its distribution in crops growing in soil of different fertility. Phytopathol Mediterr 15: 1–6Google Scholar
  114. Heap Ai, Newman EI (1980) The influence of vesicular-arbuscular mycorrhizas on phosphorus transfer between plants. New Phytol 85: 173–179CrossRefGoogle Scholar
  115. Heggo A, Angle JS, Chaney RL (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22: 865–869CrossRefGoogle Scholar
  116. Hepper CM, Azcón-Aguilar C, Rosenthal S, Sen R (1988) Competition between three species of Glomus used as spacially separated introduced and indigenous mycorrhizal inocula for leek (Album porrum L.). New Phytol 110: 207–211CrossRefGoogle Scholar
  117. Herrera MA, Salamanca CP, Barea JM (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystems. Appl Environ Microbiol 59: 129–133PubMedGoogle Scholar
  118. Hetrick BAD, Wilson GWT, Hartnett DC (1989) Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Can J Bot 67: 2608–2615CrossRefGoogle Scholar
  119. Hirrell MC, Gerdemann JW (1979) Enhanced carbon transfer between onion infected with a vesicular-arbuscular mycorrhizal fungus. New Phytol 83: 731–738CrossRefGoogle Scholar
  120. Howeler RH, Edwards DG, Asher CJ (1981) Application of the flowing solution culture techniques to studies involving mycorrhizas. Plant Soil 59: 179–183CrossRefGoogle Scholar
  121. Jabaji-Hare SH, Kendrick WB (1985) Effects of fosetyl-Al on root exudation and on composition of extracts of mycorrhizal and nonmycorrhizal leek roots. Can J Plant Pathol 7: 118–126CrossRefGoogle Scholar
  122. Jakobsen I (1986) Vesicular-arbuscular mycorrhiza in field-grown crops. III. Mycorrhizal infection and rates of phosphorus inflow in pea plants. New Phytol 103: 777–784CrossRefGoogle Scholar
  123. Jakobsen I, Nielsen NE (1983) Vesicular-arbuscular mycorrhiza in field grown crops 1 Mycorrhizal infection in cereals and peas at various times and soil depths. New Phytol 93: 401–413CrossRefGoogle Scholar
  124. Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 1 Spread of hyphae and phosphorus inflow into roots. New Phytol 120: 371–380CrossRefGoogle Scholar
  125. Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L 2 Hyphal transport of 32p over defined distances. New Phytol 120: 509–516CrossRefGoogle Scholar
  126. Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12: 56–64CrossRefGoogle Scholar
  127. Janos DP (1984) Tropical mycorrhizas, nutrient cycles and plant growth. In: Medina E, Mooney HA, Vazquez-Yanes C (eds), Physiological ecology of plants of the wet tropics. de Junk, The Hague, pp 327–345Google Scholar
  128. Jarstfer AG, Sylvia DM (1992) Inoculum production and inoculation strategies for vesicular-arbuscular mycorrhizal fungi. In: Blaine Metting F Jr (ed), Soil microbial ecology. Applications in agricultural and environmental management Marcel Dekker, New York, pp 349–377Google Scholar
  129. Jasper DA (1992) Management of mycorrhizas in revegetation Abst Int Symp Management. Mycorrhizas in Agric Hort Forestry Perth, Australia, 28th Sep-2nd Oct 1992, p 135Google Scholar
  130. Jasper DA, Abbott LK, Robson AD (1989a) Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol 112: 93–99CrossRefGoogle Scholar
  131. Jasper DA, Abbott LK, Robson AD (1989b) Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112: 101–107CrossRefGoogle Scholar
  132. Jasper DA, Abbott LK, Robson AD (1989c) Acacias respond to additions of phosphorus and to inoculation with VA mycorrhizal fungi in soils stockpiled during mineral sand mining. Plant Soil 115: 99–108CrossRefGoogle Scholar
  133. Jasper DA, Abbott LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118: 471–476CrossRefGoogle Scholar
  134. Jastrow JD, Miller RM (1991) Methods for assessing the effects of biota on soil structure. Agric Ecosyst Environ 35: 279–303CrossRefGoogle Scholar
  135. Jeffries P (1987) Use of mycorrhizae in agriculture. CRC Crit Rev Biotechnol 5: 319–358CrossRefGoogle Scholar
  136. Jeffries P, Dodd JC (1991) The use of mycorrhizal inoculants in forestry and agriculture. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds), Handbook of applied mycology vol 1. Soil and plants Marcel Dekker, New York, pp 155–186Google Scholar
  137. Jeffries P, Spyropoulos T, Vardavarkis E (1988) Vesicular-arbuscular mycorrhizal status of various crops in different agricultural soils in northern Greece. Biol Fertil Soils 5: 333–337CrossRefGoogle Scholar
  138. Joffre R, Vacher J, de los LLanos C, Long G (1988) The dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agrofor Syst 6: 71–96Google Scholar
  139. Johansen A, Jakobsen I, Jensen SE (1992) Hyphal transport of 15N labelled nitrogen by a vesicular arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol 122: 281–288CrossRefGoogle Scholar
  140. Johnson NC, Pfleger FL (1992) Vesicular-arbuscular mycorrhizae and cultural stress. In: Bethenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture ASA Spec Publ Madison, WI, pp 71–99Google Scholar
  141. Johnson CR, Copeland PJ, Crosskston RK, Pfleger FL (1992) Mycorrhizae: a possible explanation for yield decline associated with continuous cropping of corn and soybean. Agron J 84: 387–390CrossRefGoogle Scholar
  142. Kang BT, Wilson GF (1987) The development of alley cropping as a promising agroforestry technology. In: Steppler HA, Nair PKR (eds), Agroforestry, a decade of developmnet. ICRAF, Nairobi, Kenya, pp 227–243Google Scholar
  143. Kang BT, Reynolds L, Atta-Krah AN (1990) Alley farming. Adv Agron 43: 315–359CrossRefGoogle Scholar
  144. Kennedy IR, Tchan YT (1992) Biological nitrogen fixation in non-leguminous field crops: recent advances. Plant Soil 141: 93–118CrossRefGoogle Scholar
  145. Kiernan JM, Hendrix JW, Maronek DM (1983) Endomycorrhizal fungi occurring on orphan strip mines in Kentucky. Can J Bot 61: 1798–1803CrossRefGoogle Scholar
  146. Kirda C, Danso SKA, Zapata F (1989) Temporal water stress effects on nodulation, nitrogen accumulation and growth of soybean. Plant Soil 102: 49–55CrossRefGoogle Scholar
  147. Kloepper JW (1992) Plant growth-promoting rhizobacteria as biological control agents. In: Blaine F, Metting J, Jr (eds), Soil microbial ecology. Applications in agriculture forestry and environmental management Marcel Dekker, New York, pp 255–274Google Scholar
  148. Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Dordrecht, pp 315–326Google Scholar
  149. Koomen I, McGrath SP, Giller KE (1990) Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge. Application. Soil Biol Biochem 22: 871–873CrossRefGoogle Scholar
  150. Koske RE (1975) Endogone spores in Australian sand dunes. Can J Bot 53:668–672Google Scholar
  151. Koske RE, Halvorson WL (1981) Ecological studies of vesicular-arbuscular mycorrhizae in a barrier sand dune. Can J Bot 59: 1413–1422CrossRefGoogle Scholar
  152. Koslowsky SD, Boerner REJ (1989) Interactive effects of aluminum, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L (Poaceae). Environ Pollut 61: 107–125PubMedCrossRefGoogle Scholar
  153. Kothari SK, Marschner H, Römheld V (1990) Direct and indirect effects of VA mycorrhizal fungi and rhizosphere microorganisms on acquisition of mineral nutrients by maize (Zea mays L) in a calcareous soil. New Phytol 116: 637–645CrossRefGoogle Scholar
  154. Kothari SK, Marschner H, Römheld V (1991a) Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L). New Phytol 117: 648–655CrossRefGoogle Scholar
  155. Kothari SK, Marschner H, Römheld V (1991b) Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131: 177–185CrossRefGoogle Scholar
  156. Kucey RMN, Paul EA (1983) Vesicular-arbuscular mycorrhizal spore populations in various Saskatchewan soils and the effect of inoculation with Glomus mosseae on faba bean growth on greenhouse and field trials. Can J Soil Sci 63: 87–95CrossRefGoogle Scholar
  157. Ladha JK (1992) Preface: role of biological nitrogen fixation in sustainable agriculture. Plant Soil 141:viiGoogle Scholar
  158. Lal R (1989) Conservation tillage for sustainable agriculture: tropics versus temperate environments. Adv Agron 42: 85–185CrossRefGoogle Scholar
  159. Lapeyrie FF, Chilvers GA (1985) An endomycorrhizae ectomycorrhizae succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol 100: 93–104CrossRefGoogle Scholar
  160. Le Houérou HN (1987) Indigenous shrubs and trees in the silvopastoral systems of Africa. In: Steppler HA, Nair PKR (eds), Agroforestry, a decade of development ICRAF, Nairobi, pp 139–147Google Scholar
  161. Le Tacon F, Harley JL (1990) Deforestation in the tropics and proposals to arrest it. Ambio 19: 372–378Google Scholar
  162. Linderman RG (1992) Vesicular-arbuscular mycorrhizal and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture. ASA Spec Publ, Madison, WI, pp 45–70Google Scholar
  163. López-Bermúdez F, Albaladejo J (1990) Factores ambientales de la degradación del suelo en el area mediterranea. In: Albaladejo J, Stocking MA, Díaz E (eds), Soil degradation and rehabilitation in mediterranean environmental conditions CSIC, Murcia, pp 15–45Google Scholar
  164. MacRae RJ, Hill SB, Mehuys GR, Henning J (1990) Farm-scale agronomic and economic conversion from conventional to sustainable agriculture. Adv Agron 43: 155–159CrossRefGoogle Scholar
  165. Manjunath A, Bagyaraj DJ, Gopala Gowda HS (1984) Dual inoculation with VA mycorrhiza and Rhizobium beneficial to Leucaena. Plant Soil 78: 445–448CrossRefGoogle Scholar
  166. McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94: 120–122CrossRefGoogle Scholar
  167. McNaughton SJ, Oesterheld M (1990) Extramatrical mycorrhizal abundance and grass nutrition in a tropical grazing ecosystem, the Serengeti National Park, Tanzania. Oikos 59: 92–96CrossRefGoogle Scholar
  168. Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular arbuscular mycorrhizal fungi and a plant growth promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18: 185–190CrossRefGoogle Scholar
  169. Michelsen A, Rosendahl S (1990) The effect of VA mycorrhizal fungi, phosphorus and drought stress on the growth of Acacia nilotica and Leucaena leucocephala seedlings. Plant Soil 124: 7–13CrossRefGoogle Scholar
  170. Miller RM, Jastrow JD (1992a) The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen MF (ed), Mycorrhizal functioning an integrative plant fungal process. Chapman & Hall, New York, pp 438–467Google Scholar
  171. Miller RM, Jastrow JD (1992b) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture. ASA SpecPubl, Madison, WI, pp 29–44Google Scholar
  172. Morgan RPC, Rickson RJ, Wright W (1990) Regeneration of degraded soils. In: Albaladejo J, Stocking MA, Diaz E (eds), Soil degradation and rehabilitation in Mediterranean environmental conditions. CSIC Murcia, pp 69–85Google Scholar
  173. Mosse B (1986) Mycorrhiza in a sustainable agriculture. Biol Agric Hortic 3: 191–209CrossRefGoogle Scholar
  174. Mosse B, Stribley DP, Le Tacon F (1981) Ecology of mycorrhizae and mycorrhizal fungi. Adv Microb Ecol 5: 137–210CrossRefGoogle Scholar
  175. Mozafar A, Duss F, Oertly JJ (1992) Effect of Pseucomonas fluorescens on the root exudates of two tomato mutants differently sensitive to Fe chlorosis. Plant Soil 144: 167–176CrossRefGoogle Scholar
  176. Murgueitio E (1990) Intensive sustainable livestock production: an alternative to tropical deforestation. Ambio 19: 397–400Google Scholar
  177. Nelson CE (1986) The water relations of vesicular-arbuscular mycorrhizal systems. In: Safir GR (ed), Ecophysiology of VA mycorrhizal plants CRC, Boca Raton, pp 71–91Google Scholar
  178. Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18: 243–270CrossRefGoogle Scholar
  179. Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76: 319–337CrossRefGoogle Scholar
  180. Ocampo JA (1980) Effect of crop rotations involving host and non-host plants on vesicular-arbuscular infection of host roots. Plant Soil 56: 283–291CrossRefGoogle Scholar
  181. Odum EP (1969) The strategy of ecosystem development. Science 165: 262–270CrossRefGoogle Scholar
  182. Ofori F, Stern WR (1987) Cereal-legume intercropping systems. Adv Agron 40: 41–48CrossRefGoogle Scholar
  183. Olivares J, Herrera MA, Bedmar EJ (1988) Woody legumes in arid and semi-arid zones: the Rhizobium-Prosopis chilensis symbiosis. In: Beck DP, Materon LA (eds), Nitrogen fixation legumes in mediterranean agriculture ICARDA, Martinus Nijhoff, Dordrecht, pp 65–72CrossRefGoogle Scholar
  184. Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU (1991) Effects of ectomycorrhizal and vesicular-arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil 136: 131–143CrossRefGoogle Scholar
  185. Osunde AO (1992) Response of Gliricidia sepium to Rhizobium and VA-mycorrhizal fungi inoculation on an acid soil. In: IFS (ed), Interactions between plants and microorganisms. Dakar, Senegal, pp 156–164Google Scholar
  186. Pankow W, Boller T, Wiemkem A (1991) The siginificance of mycorrhizas in protective ecosystems. Experientia 47: 391–394CrossRefGoogle Scholar
  187. Pena JI, Sanchez-Diaz M, Aguirreolea J, Becana M (1988) Increased stress tolerance of nodule activity in the Medicago-Rhizobium-Glomus symbiosis under drought. J Plant Physiol 133: 79–83CrossRefGoogle Scholar
  188. Peoples MB, Craswell ET (1992) Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture. Plant Soil 141: 13–39CrossRefGoogle Scholar
  189. Perry DA, Molina R, Amaranthus MP (1987) Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs. Can J For Res 17: 929–940CrossRefGoogle Scholar
  190. Plaut Z, Grieve CM (1988) Photosynthesis of salt-stressed maize as influenced by Ca: Na ratios in the nutrient solution. Plant Soil 105: 283–286CrossRefGoogle Scholar
  191. Poss JA, Pond E, Menge JA, Jarrel WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88: 307–319CrossRefGoogle Scholar
  192. Puppi G, Tartaglini N (1991) Mycorrhizal types in three Mediterranean communities affected by fire to different extents. Acta Oecol 12: 295–304Google Scholar
  193. Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb 86B: 89–110Google Scholar
  194. Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391CrossRefGoogle Scholar
  195. Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88: 341–352CrossRefGoogle Scholar
  196. Read DJ, Koucheki HH, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. I. The occurrence of infection. New Phytol 77: 641–653CrossRefGoogle Scholar
  197. Reddell P, Spain AV (1991) Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23: 767–774CrossRefGoogle Scholar
  198. Reeves M (1992) The role of VAM fungi in nitrogen dynamics in maize-bean intercrops. Plant Soil 144: 85–92CrossRefGoogle Scholar
  199. Rosendahl CN, Rosendahl S (1991) Influence of vesicular arbuscular mycorrhizal fungi (Glomus spp) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ Exp Bot 31: 313–318CrossRefGoogle Scholar
  200. Rosendahl S, Sen R (1992) Isozyme analysis of mycorrhizal fungi and their mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds), Methods in microbiology, vol 24. Academic Press, London, pp 169–194Google Scholar
  201. Roskoski JP, Pepper I, Pardo E (1986) Inoculation of leguminous trees with rhizobia and VA mycorrhizal fungi. For Ecol Manage 16: 57–68CrossRefGoogle Scholar
  202. Rozycka M, Jeffries P, Dodd JC (1992) Immunological identification and characterization of arbuscular mycorrhizal fungi (AMF) Abst Int Symp Managern Mycorrhizas in Agric Hortic Forestry, Perth, Australia, 28th Sep-2nd Oct, 1992, p 159Google Scholar
  203. Sanginga N (1992) Nitrogen fixation by trees and its contribution to the nitrogen status of soils or associated crops. In: IFS (ed), Interactions between plants and microorganisms. International Foundation ofr Science Dakar, Senegal, pp 1432Google Scholar
  204. Saxerud MH, Funke BR (1991) Effects on plant growth of inoculation of stored stripmining topsoil in North Dakota with mycorrhizal fungi contained in native soils. Plant Soil 131: 135–141Google Scholar
  205. Schenck NC, Kinloch RA (1980) Incidence of mycorrhizal fungi on six field crops in monoculture on a newly cleared woodland site. Mycologia 72: 445–456CrossRefGoogle Scholar
  206. Schüepp H, Dehn B, Sticher H (1987) Interaktionen zwischen VA-Mykorrhizen und Schermetallbelastungen. Angew Bot 61: 85–96Google Scholar
  207. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems Deutsche GTZ Eschborn, Germany, 371 ppGoogle Scholar
  208. Sieverding E, Howeler RH (1985) Influence of species of VA mycorrhizal fungi on cassava yield response to phosphorus fertilization. Plant Soil 88: 213–221CrossRefGoogle Scholar
  209. Sieverding E, Leihner DE (1984) Influence of crop rotation and intercropping of cassava with legumes on VA mycorrhizal symbiosis of cassava. Plant Soil 80: 143–146CrossRefGoogle Scholar
  210. Simpson D, Daft MJ (1990) Interactions between water-stress and different mycorrhizal inocula on plant growth and mycorrhizal development in maize and sorghum. Plant Soil 121: 179–186CrossRefGoogle Scholar
  211. Skujins J, Allen MF (1986) Use of mycorrhizae for land rehabilitation. MIRCEN J 2: 161–176CrossRefGoogle Scholar
  212. Smith SE, Gianinazzi-Pearson V (1988) Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39: 221–244CrossRefGoogle Scholar
  213. Sreenivasa MN, Bagyaraj DJ (1989) Use of pesticides for mass production of vesicular-arbuscular mycorrhizal inoculum. Plant Soil 119: 127–132CrossRefGoogle Scholar
  214. Stahl PD, Williams SE, Christensen M (1988) Efficacy of native vesicular -arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110: 347–354CrossRefGoogle Scholar
  215. Stribley DP (1989) Present and future value of mycorrhizal inoculants. In: Campbell R, MacDonald RM (eds), Microbial inoculation of crop plants. IRL Press, Oxford, pp 49–65Google Scholar
  216. Sylvia DM (1990) Inoculation of native woody plants with vesicular-arbuscular mycorrhizal fungi for phosphate mine land reclamation. Agric Ecosyst Environ 31: 253–261CrossRefGoogle Scholar
  217. Sylvia DM, Williams SE (1992) Vesicular-arbuscular mycorrhizae and environmental stresses. In: Bethlenfalvay GJ, Linderman RG (eds), Mycorrhizae in sustainable agriculture ASA Spec Publ, Madison, WI, pp 101–124Google Scholar
  218. Sylvia DM, Hammond LC, Bennett JM, Haas JH, Linda SB (1993) Field response of maize to a VAM fungus and water management. Agron J 85 (in press)Google Scholar
  219. Thoen D (1987) First observations on the occurrence of vesicular-arbuscular mycorrhizae (VAM) in hydrophytes, hygrophytes, halophytes and xerophytes in the region of lake Retba (Cap-vert, Senegal) during the dry season. Mem Soc R Bot Belg 9: 60–66Google Scholar
  220. Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38: 847–867CrossRefGoogle Scholar
  221. Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasiculatum in relation to root carbohydrates. New Phytol 103: 751–765CrossRefGoogle Scholar
  222. Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29: 729–743CrossRefGoogle Scholar
  223. Tisdall JM, Oades JM (1980) The effect of crop rotation on aggregation in a red-brown earth. Aust J Soil Res 18: 423–433CrossRefGoogle Scholar
  224. Tommerup IC (1988) The vesicular arbuscular mycorrhizas. Adv Plant Pathol 6: 81–92Google Scholar
  225. Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Annu Rev Phytopathol 22: 331–359CrossRefGoogle Scholar
  226. Van Kessel C, Singleton PW, Hoben H (1985) Enhanced nitrogen-transfer from a soybean to maize by vesicular arbuscular mycorrhizal (VAM) fungi. Plant Physiol 79: 562–563PubMedCrossRefGoogle Scholar
  227. Veenendaal EM, Monnaapula SC, Gilika T, Magole IL (1992) Vesicular-arbuscular mycorrhizal infection of grass seedlings in a degraded semi-arid savanna in Botswana. New Phytol 121: 477–485CrossRefGoogle Scholar
  228. Vilarino A, Arines J (1991) Numbers and viability of vesicular-arbuscular fungal propagules in field soil samples after wildfire. Soil Biol Biochem 23: 1083–1087CrossRefGoogle Scholar
  229. Walker C, Mize CW, McNabb HS Jr (1982) Populations of endogonaceous fungi at two locations in central Iowa. Can J Bot 60: 2518–2529CrossRefGoogle Scholar
  230. Whittingham J, Read DJ (1982) Vesicular-arbuscular mycorrhizae in natural vegetation systems III Nutrient transfer between plants with mycorrhizal interconnections. New Phytol 97: 413–426Google Scholar
  231. Wood TE (1991) VA mycorrhizal fungi: challenges for commercialization. In: Arora DK, Mukerji KG, Elander RP (eds), Handbook of applied mycology, vol 4, Biotechnology. Dekker, New York, pp 823–847Google Scholar
  232. Wright SF, Morton JB, Sworobuk JE (1987) Identification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-linked immunosorbent assay. Appl Environ Microbiol 53: 2222–2225PubMedGoogle Scholar
  233. Wyss P, Bonfante P (1992) Amplification of genomic DNA of arbuscular-mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycol Research 97: 1351–1357CrossRefGoogle Scholar
  234. Zak JC, Parkinson D (1983) Effects of surface amendation of two mine spoils in Alberta, Canada on vesicular-arbuscular mycorrhizal development of slender wheatgrass: a 4 year study. Can J Bot 61: 798–803CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • J. M. Barea
    • 1
  • P. Jeffries
    • 2
  1. 1.Estacion Experimental del Zaidín CSICGranadaSpain
  2. 2.Biological LaboratoryUniversity of KentCanterbury, KentUK

Personalised recommendations