Skip to main content

The Status and Function of Ericoid Mycorrhizal Systems

  • Chapter
Mycorrhiza

Abstract

While ecologists have recognised the association between plants of the order Ericales and nutrient impoverished soils, it has been customary for them to emphasise above-ground features when considering the attributes which may confer success upon its constituent families and their close relatives. Specht (1979), for example, described the heathlands of the world as being defined by the presence of the families Ericaceae, Empetraceae, Epacridaceae, Diapensiaceae and Prionotocaeae, all of which were characterised by their possession of an evergreen sclerophyllous habit. Sclerophylly may, as pointed out by Specht and Rundel (1990), be a product of low nutrient availablity, since it is inevitable that as supplies of the major elements nitrogen (N) and phosphorus (P) decline, increasing proportions of fixed carbon are diverted from functional to the structural components cellulose, lignin and its phenolic precursors. However, the consequences of these above-ground modifications for the quality of the resources derived from them in the form of litter, and the relationship between the quality of substrates and the attributes required for mobilisation of their sequestered nitrogen and phosphorus have received relatively little attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuarghub SM, Read DJ (1988) The biology of mycorrhiza in the Ericaceae. XII. Quantitative analysis of individual “free” amino acids in relation to time and depth in the soil profile. New Phytol 108: 433–441

    Article  CAS  Google Scholar 

  • Allen WK, Allaway WG, Cox GC, Valder PG (1989) Ultrastructure of mycorrhizas of Dracophyllum secundum R. Br. (Ericales: Epacridaceae ). Aust J Plant Physiol 16: 147–154

    Article  Google Scholar 

  • Bââth E, Söderström B (1979) Fungal biomass and fungal immobilisation of plant nutrients in Swedish coniferous forest soils. Rev Ecol Biol Sol 16: 477–489

    Google Scholar 

  • Bain HF (1937) Production of synthetic mycorrhiza in the cultivated cranberry. J Agric Res 55: 811–835

    Google Scholar 

  • Bajwa R, Read DJ (1985) The biology of mycorrhiza in the Ericaceae IX Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and nonmycorrhizal plants. New Phytol 101: 459–467

    Article  CAS  Google Scholar 

  • Bajwa R, Read DJ (1986) Utilization of mineral and amino N sources by the ericoid mycorrhizal endophyte Hymenoscyphus ericae and by mycorrhizal and nonmycorrhizal seedlings of Vaccinium. Trans Br Mycol Soc 87: 269–277

    Article  CAS  Google Scholar 

  • Bajwa R, Abuarghub S, Read DJ (1985) The biology of mycorrhiza in the Ericaceae. X. The utilization of proteins and the production of proteolytic enzymes by the mycorrhizal endophyte and by mycorrhizal plants. New Phytol 101: 469–486

    Google Scholar 

  • Bonfante-Fasolo P (1980) Occurrence of a basidiomycete in living cells of mycorrhizal hair roots of Calluna vulgaris. Trans Br Mycol Soc 75: 320–325

    Article  Google Scholar 

  • Bradley R, Burt Ai, Read DJ (1981) Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris. Nature (Lond) 292: 335–337

    Article  CAS  Google Scholar 

  • Bradley R, Burt AJ, Read DJ (1982) The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhizal infection in heavy metal resistance. New Phytol 91: 197–209

    Google Scholar 

  • Burgeff H (1961) Mikrobiologie des Hochmoores. Gustav Fischer, Stuttgart

    Google Scholar 

  • Burt AJ, Hashem AR, Shaw G, Read DJ (1986) Comparative analysis of metal tolerance in ericoid and ectomycorrhizal fungi. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Proc 1st Eur Symp on Mycorrhizas. INRA, Paris, pp 683–687

    Google Scholar 

  • Chapin FS, Morilanen L, Keilland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361: 150–153

    Article  CAS  Google Scholar 

  • Couture M, Fortin JA, Dalpé Y (1983) Oidiodendron griseum Robak. An endophyte of ericoid mycorrhiza in Vaccinium species. New Phytol 95: 375–380

    Google Scholar 

  • Dalpé Y (1986) Axenic synthesis of ericoid mycorrhiza in Vaccinium angustifolium Ait. by Oidiodendron species. New Phytol 103: 391–396

    Article  Google Scholar 

  • Dalpé Y (1989) Ericoid mycorrhizal fungi in the Myxotrichaceae and Gymnoascaceae. New Phytol 113: 523–527

    Article  Google Scholar 

  • Dalpé Y (1991) Statut endomycorhizien du genre Oidiodendron. Can J Bot 69: 1712–1714

    Article  Google Scholar 

  • Dalpé Y, Litten W, Sigler L (1989) Scytalidium vaccinii a new species, an ericoid endophyte of Vaccinium angustifolium roots. Mycotaxon 35: 371–378

    Google Scholar 

  • Dighton J, Coleman DC (1991) Phosphorus relations of roots and mycorrhizas of Rhododendron maximum L. in the southern Appalachians, North Carolina. Mycorrhiza 1: 175–184

    Google Scholar 

  • Doak KD (1928) The mycorrhizal fungus of Vaccinium. Phytopathology 18: 101–108

    Google Scholar 

  • Douglas CG, Heslin MC, Read C (1989) Isolation of Oidiodendron maius from Rhododendron and ultrastructural characterisation of synthesised mycorrhizas. Can J Bot 67: 2206–2212

    Article  Google Scholar 

  • Duddridge JA, Read DJ (1982) An ultrastructural analysis of the development of mycorrhizas in Rhododendron ponticum. Can J Bot 60: 2345–2356

    Article  Google Scholar 

  • Egger KN, Sigler L (1993) Relatedness of the ericoid endophytes Scytalidium vaccinii and Hymenoscyphus ericae inferred from analysis of ribosomal DNA. Mycologia 85: 219–230

    Article  CAS  Google Scholar 

  • Englander L, Hull RJ (1980) Reciprocal transfer of nutrients between ericaceous plants and a Clavaria sp. New Phytol 84: 661–667

    Article  Google Scholar 

  • Friesleben R (1933) Über experimentelle Mykorrhiza-Bildung bei den Ericaceen. Ber Dtsch Bot Ges 51: 351–356

    Google Scholar 

  • Friesleben R (1936) Weitere Untersuchungen über die Mykotrophie der Ericaceen. Jahrb Wiss Bot 82: 413–459

    Google Scholar 

  • Gimingham CH (1960) Biological flora of the British Isles. Calluna vulgaris L. Hull. J Ecol 48: 455–483

    Article  Google Scholar 

  • Gimingham CH (1972) Ecology of heathlands. Chapman and Hall, London

    Google Scholar 

  • Groves RH (1981) Heathland soils and their fertility status. In: Specht RL (ed) Ecosystems of the world. Heathland and related shrublands, vol 9B Elsevier, Amsterdam, pp 151–163

    Google Scholar 

  • Harley JL (1959) The biology of mycorrhiza. Leonard Hill, London

    Google Scholar 

  • Haselwandter K, Read DJ (1983) Die Mykorrhizainfektion von Rhodothamnus chamaecistus ( L.) Rehb., einer ostalpinen, calcicolen Ericacae. Sydowia Ann Mycol II 36: 75–77

    Google Scholar 

  • Haselwandter K, Bobleter O, Read DJ (1990) Utilisation of lignin by ericoid and ectomycorrhizal fungi. Arch Mikrobiol 153: 352–354

    CAS  Google Scholar 

  • Heil GW, Diemont WM (1983) Raised nutrient levels change heathland into grassland. Vegetatio 53: 113–120

    Article  Google Scholar 

  • Hutton BJ, Dixon KW, Sivasithamparam K (1994) Ericoid endophytes of Western Australian heaths ( Epacridaceae ). New Phytol 127: 557–566

    Google Scholar 

  • Jalal MAF, Read DJ (1983a) The organic acid composition of Calluna heathland soil with special reference to phyto-and fungi-toxicity. I. Isolation and identification of organic acids. Plant Soil 70: 257–272

    Google Scholar 

  • Jalal MAF, Read DJ (1983b) The organic acid composition of Calluna heathland soil with special reference to phyto-and fungi-toxicity. II. Monthly quantitative determination of the organic acid content of Calluna and spruce dominated soils. Plant Soil 70: 273–286

    Article  CAS  Google Scholar 

  • Johnson CR, Joiner JN, Crews CE (1980) Effects of N, K and Mg on growth and leaf nutrient composition of three container grown woody ornamentals inoculated with mycorrhizae. J Am Soc Hortic Sci 105: 286–288

    Google Scholar 

  • Kerley S, Read DJ (1995) The biology of mycorrhiza in the Ericaceae. XIX The mobilisation and assimilation of nitrogen from fungal necromass by H. ericae and mycorrhizal plants. New Phytol (in press)

    Google Scholar 

  • Koch R (1912) Complete works, vol 1: George Thieme, Leipzig, pp 650–660

    Google Scholar 

  • Koske RE, Gemma JN, Englander L (1990) Vesicular-arbuscular mycorrhizae in Hawaian Ericales. Am J Bot 77: 64–68

    Article  Google Scholar 

  • Lamont BB (1984) Specialised modes of nutrition. In: Pate JS, Beard JS (eds) Kwongan: plant life of the sandplain. University of Western Australia Press, Perth, pp 236–245

    Google Scholar 

  • Largent DL, Sugihara N, Wishner C (1980) Occurrence of mycorrhizae on ericaceous and pyrolacean plants in northern California. Can J Bot 58: 2274–2279

    Article  Google Scholar 

  • Leake JR, Read DJ (1989) The biology of mycorrhiza in the ericaceae. XIII. Some characteristics of the extracellular proteinase activity of the ericoid endophyte Hymenoscyphus ericae. New Phytol 112: 69–76

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1990a) Proteinase activity in mycorrhizal fungi. I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol 115: 243–250

    Google Scholar 

  • Leake JR, Read DJ (1990b) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94: 993–995

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1990c) The effects of phenolic compounds on nitrogen mobilisation by ericoid mycorrhizal system. Agric Ecosyst Environ 29: 225236

    Google Scholar 

  • Leake JR, Read DJ (1991) Experiments with ericoid mycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology 23. Academic Press, London, pp 435–459

    Google Scholar 

  • Mitchell DT, Read DJ (1986) Utilization of inorganic and organic phosphates by the mycorrhizal endophytes of Vaccinium macrocarpon and Rhododendron ponticum. Trans Br Mycol Soc 76: 255–260

    Article  Google Scholar 

  • Moore-Parkhurst S, Englander L (1982) Mycorrhizal status of Rhododendron spp. in commercial nurseries in Rhode Island. Can J Bot 60: 2342–2344

    Google Scholar 

  • Mueller WC, Tessier BJ, Englander L (1986) Immunocytochemical detection of fungi in the roots of Rhododendron. Can J Bot 64: 718–725

    Article  Google Scholar 

  • O’Dell TE, Massicotte HB, Trappe JM (1993) Root colonization of Lupinus latifolius Agardh. and Pinus contorta Dougl. by Phialocephala fortinii Wang and Wilcox. New Phytol 124: 93–100

    Article  Google Scholar 

  • Pate JS, Hopper SD (1993) Rare and common plants in ecosystems, with special reference to the south-west Australian flora. In: Schultze ED, Mooney HA (eds) Biodiversity and ecosystem function. Ecological studies 99. Springer, Berlin Heidelberg, New York, pp 293–325

    Google Scholar 

  • Pate JS, Steward GR, Unkovitch M (1993) 15 N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilisation, life form, mycorrhizal status and N2-fixing abilities of component species. Plant Cell Environ 16: 365–373

    Google Scholar 

  • Pearson V, Read DJ (1973) The biology of mycorrhiza in the Ericaceae. I. The isolation of the endophyte and synthesis of mycorrhizas in aseptic cultures. New Phytol 72: 371–379

    Google Scholar 

  • Pearson V, Read DJ (1975) The physiology of the mycorrhizal endophyte Callum vulgaris. Trans Br Mycol Soc 64: 1–7

    Article  Google Scholar 

  • Peterson TA, Mueller WC, Englander L (1980) Anatomy and ultrastructure of a Rhododendron root-fungus association. Can J Bot 58: 2421–2433

    Article  Google Scholar 

  • Rayner MC (1915) Obligate symbiosis in Calluna vulgaris. Ann Bot (Lond) 29: 97–133

    Google Scholar 

  • Rayner MC (1925) The nutrition of mycorrhiza plants: Calluna vulgaris. Br J Exp Biol 2: 265–291

    Google Scholar 

  • Rayner MC (1929) Biology of fungus infection in the genus Vaccinium. Ann Bot (Lond) 43: 55–70

    Google Scholar 

  • Read DJ (1974) Pezizella ericae sp. nov., the perfect state of a typical mycorrhizal endophyte of the Ericaceae. Trans Br Mycol Soc 63:381–383

    Google Scholar 

  • Read DJ (1983) The biology of mycorrhiza in the Ericales. Can J Bot 61: 985–1004

    Article  CAS  Google Scholar 

  • Read DJ (1984) Interactions between ericaceous plants and their competitors with special reference to soil toxicity. Aspects Appl Biol 5: 195–209

    Google Scholar 

  • Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb 96B: 80–110

    Google Scholar 

  • Read DJ (1991) The mycorrhizal fungal community with special reference to nutrient mobilization In: Carroll GC, Wicklow DT (eds) The fungal community. Marcel Dekker, New York, pp 631–652

    Google Scholar 

  • Read DJ (1993) Plant-microbe mutualisms and community structure. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Ecological studies 99. Springer, Berlin, Heidelberg, New York, pp 181–210

    Google Scholar 

  • Read DJ, Stribley DP (1975) Some mycological aspects of the biology of mycorrhiza in the Ericaceae. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London, pp 105–119

    Google Scholar 

  • Reed ML (1989) Ericoid mycorrhizas of Styphelidae: intensity of infection and nutrition of the symbionts. Aust J Plant Physiol 16: 155–160

    Article  Google Scholar 

  • Seviour RJ, Willing RR, Chilvers GA (1973) Basidiocarps associated with ericoid mycorrhizas. New Phytol 72: 381–385

    Article  Google Scholar 

  • Specht RL (1979) Heathlands and related shrublands of the world. In: Specht RL (ed) Ecosystems of the world. Heathlands and related shrublands. vol 9A Elsevier, Amsterdam: pp 1–18

    Google Scholar 

  • Specht RL, Rundel PW (1990) Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust J Bot 38: 459–474

    Article  Google Scholar 

  • Stoyke G, Currah RS (1991) Endophytic fungi from the mycorrhizae of alpine ericoid plants. Can J Bot 69: 347–352

    Article  Google Scholar 

  • Straker CJ, Mitchell DT (1986) The activity and characterization of acid phosphatases in endomycorrhizal fungi of the Ericaceae. New Phytol 104: 243–256

    Article  CAS  Google Scholar 

  • Straker CJ, Gianinazzi-Pearson V, Gianinazzi S, Gleyet-Marel J-C, Bousquet N (1989) Electrophoretic and immunological studies on acid phosphatase from a mycorrhizal fungus of Erica hispidula L. New Phytol 111: 215–221

    Article  CAS  Google Scholar 

  • Stribley DP, Read DJ (1974) The biology of mycorrhiza in the Ericaceae IV. The effects of mycorrhizal infection on the uptake of 15 N from labelled soil by Vaccinium macrocarpon Ait. New Phytol 73: 1149–115

    Article  Google Scholar 

  • Stribley DP, Read DJ (1976) The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait.) in sand culture. New Phytol 77: 63–72

    Article  CAS  Google Scholar 

  • Stribley DP, Read DJ (1980) The biology of mycorrhiza in the Ericaceae. VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol 86: 365–371

    Google Scholar 

  • Stribley DP, Read DJ, Hunt R (1975) The biology of mycorrhiza in the Ericaceae. V. The effect of mycorrhizal infection, soil type and partial soil sterilisation on growth of cranberry (Vaccinium macrocarpon Ait). New Phytol 75: 119–130

    Article  CAS  Google Scholar 

  • Taylor CMA, Tabbush PM (1990) Nitrogen deficiency in sitka spruce plantations. Forestry Commission Bulletin 89. HMSO, London

    Google Scholar 

  • Wilcox HE, Wang CJK (1987) Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month old tree seedlings. Can J For Res 17: 884–889

    Article  Google Scholar 

  • Xiao G, Berch SM (1992) Ericoid mycorrhizal fungi of Gaultheria shallon. Mycologia 84: 470–471

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Read, D.J., Kerley, S. (1995). The Status and Function of Ericoid Mycorrhizal Systems. In: Varma, A., Hock, B. (eds) Mycorrhiza. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08897-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08897-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08899-9

  • Online ISBN: 978-3-662-08897-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics