Mycorrhiza pp 443-467 | Cite as

Application of Arbuscular Mycorrhizal Fungi (AMF) in Orchard and Ornamental Plants

  • P. E. Lovato
  • H. Schüepp
  • A. Trouvelot
  • S. Gianinazzi


Technology has brought a great increase in world agricultural production in the last decades, by improving productivity and by making possible the incorporation of areas until then considered marginal. These benefits have essentially come from the increase in the quantity of grains, oilseeds and feeds for animal production. However, in the last years, urbanization and changes in eating habits have caused a shift towards the consumption of fresh fruits and vegetables. This has been followed by a growing commercialization of ornamental plants. These products come from a labour- and capital-intensive activity, where chemical input plays an essential role, but also brings up a set of problems linked with the degradation of the natural environment and resource base. The aim of this chapter is to present new developments in the potential use of biological tools such as the arbuscular mycorrhizal fungi (AMF), which should ensure adequate levels of food production with a satisfactory reduction of chemical fertilizer and pesticides, in the context of the technologies needed for sustainable agriculture. The potential of AMF as biofertilizers and bioprotectors to enhance crop production is well recognized, but not well exploited because of the current agronomic practices, with their implications for the environment. In order to clarify some of these points, we will first briefly review some aspects of arbuscular mycorrhiza biology, ecology, and the methods used to study them. Readers can refer to other sections of this volume, where many of these topics are more extensively discussed.


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Panicum Virgatum Arbuscular Mycorrhiza Arbuscular Mycorrhizal Fungus Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augé RM, Stodola AJW (1990) An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of rose plants affected by drought. New Phytol 115: 285–295CrossRefGoogle Scholar
  2. Augé RM, Schekel KA, Wample RL (1987) Rose leaf elasticity changes in response to mycorrhizal colonization and drought acclimation. Physiol Plant 70: 175–182CrossRefGoogle Scholar
  3. Augé RM, Stodola AJW, Brown MS, Bethlenfalvay GJ (1992) Stomatal response of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol 120: 117–125CrossRefGoogle Scholar
  4. Azcón-Aguilar C, Gianinazzi-Pearson V, Fardeau JC, Gianinazzi S (1986) Effect of vesicular-arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria on growth and nutrition of soybean in a neutral-calcareous soil given 32P45Ca tricalcium phosphate. Plant Soil 96: 3–15CrossRefGoogle Scholar
  5. Azcón-Aguilar C, Barceló A, Vidal MT, de la Vina G (1992) Further studies on the influence of mycorrhizae on growth and development of micropropagated avocado plants. Agronomie 12: 837–840CrossRefGoogle Scholar
  6. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108: 211–218CrossRefGoogle Scholar
  7. Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonoids. Appl Environ Microbiol 58: 821–825PubMedGoogle Scholar
  8. Bethlenfalvay GJ, Linderman RJ (1992) Mycorrhizae in sustainable agriculture. American Society of Agronomy, MadisonGoogle Scholar
  9. Biermann B, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95: 97–105CrossRefGoogle Scholar
  10. Blal B, Gianinazzi-Pearson V (1989) Interest of mycorrhiza for the production of micropropagated oil palm clones. Agric Ecosyst Environ 29: 39–43CrossRefGoogle Scholar
  11. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134: 189–207CrossRefGoogle Scholar
  12. Bouhired L, Gianinazzi S, Gianinazzi-Pearson V (1992) Influence of endomycorrhizal inoculation on the growth of Phoenix dactilyfera. COST 87 and COST 8.10 Joint Meet Micropropagation, root regeneration and mycorrhizas, 21–23 May 1992, DijonGoogle Scholar
  13. Branzanti B, Gianinazzi-Pearson V, Gianinazzi S (1992) Influence of phosphate fertilization on the growth and nutrient status of micropopagated apple infected with endomycorrhizal fungi during the weaning stage. Agronomie 12: 841–845CrossRefGoogle Scholar
  14. Calvet C, Pera J, Barea JM (1993) Growth response of marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviride and Pythium ultimum in a peat-perlite mixture. Plant Soil 148: 1–6CrossRefGoogle Scholar
  15. Caron M (1989) Potential use of mycorrhizae in control of soil-borne diseases. Can J Plant Pathol 11: 177–179CrossRefGoogle Scholar
  16. Cayrol JC (1991) Proprietés nématicides des endomycorhizes à vésicules et arbuscules. PHM Rev Hortic 321 décembre: 33–42Google Scholar
  17. Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84: 315–321CrossRefGoogle Scholar
  18. Clapperton MJ, Reid DM (1992) A relationship between plant growth and increasing VA mycorrhizal inoculum density. New Phytol 120: 227–234CrossRefGoogle Scholar
  19. COST (European Co-operation in the Field of Scientific and Technical Research) (1994) Network 8.10 on vesicular-arbuscular mycorrhizas — Report of 1993 Gianinazzi S, Schüepp H (eds). Dijon — Wädenswill (CH) pp 206–214Google Scholar
  20. Da Silva EJD, Ratledge C, Sasson A (1992) Biotechnology: economic and social aspects: issues for developing countries. Cambridge University Press-Unesco, CambridgeGoogle Scholar
  21. Davies JFT, Potter JR, Linderman RG (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J Plant Physiol 139: 289–294CrossRefGoogle Scholar
  22. Dehne HW (1982) Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72: 1115–1119Google Scholar
  23. Diem HG, Jung G, Mugnier J, Ganry F, Dommergues Y (1981) Alginate entrapped Glomus mosseae for crop inoculation. In: Proc 5th North American Conf on Mycorrhizae. University Laval, Quebec, 23 ppGoogle Scholar
  24. Diop TA, Bécard G, Piché Y (1992) Long term in vitro culture of an endomcorrhizal fungus, Gigaspora margarita, on Ri T-DNA transformed roots of carrot. Symbiosis 12: 249–259Google Scholar
  25. Ferguson JL, Woodhead SH (1982) Production of mycorrhizal inoculum A. Increase and maintenance of vesicular-arbuscular mycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhiza research. American Phytopathological Society, St Paul, MN, pp 47–54Google Scholar
  26. Fitter AH (1988) Water relations of red clover Trifolium pratense L. as affected by VA mycorrhizal infection and phosphorus supply before and during drought. J Exp Bot 39: 595–603CrossRefGoogle Scholar
  27. Frey B, Schüepp H (1993) Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol 124: 221–230CrossRefGoogle Scholar
  28. Furlan V (1993) Large scale application of endomycorrhizal fungi and technology transfer to the farmer. In: Abstr 9th North American Conf on Mycorrhizae, Guelph, Ontario, 77 ppGoogle Scholar
  29. Gardiner DT, Christensen NW (1991) Pear seedling responses to phosphorus, fumigation and mycorrhizal inoculation. J Hortic Sci 66: 775–780Google Scholar
  30. Gianinazzi S (1991) Vesicular-arbuscular (endo-) mycorrhizas: cellular, biochemical and genetic aspects. Agric Ecosyst Environ 35: 105–119CrossRefGoogle Scholar
  31. Gianinazzi S, Gianinazzi-Pearson V (1986) Connaissances actuelles des bases physiologiques et biochimiques des effets des endomycorhizes sur le comportement des plantes. Physiol Vég 24: 253–262Google Scholar
  32. Gianinazzi S, Gianinazzi-Pearson V (1992) Cytology, histochemistry and immunocytochemistry as tools for studying structure and function in endomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 24. Academic Press, London, pp 109–139Google Scholar
  33. Gianinazzi S, Trouvelot A, Gianinazzi-Pearson V (1989) Conceptual approaches for the rational use of VA endomycorrhizae in agriculture: possibilities and limitations. Agric Ecosyst Environ 29: 153–161CrossRefGoogle Scholar
  34. Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (1990) Potentialities and procedures for the use of endomycorrhizas with emphasis on high value crops. In: Whips JM, Lumsden B (eds) Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, pp 41–54Google Scholar
  35. Gianinazzi S, Gianinazzi-Pearson V, Tisserant B, Lemoine MC (1992) Protein activities as potential markers of functional mycorrhizas in plants. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Oxon, pp 333–339Google Scholar
  36. Gianinazzi-Pearson V, Gianinazzi S (1976) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. I. Effects of mycorrhiza formation and phosphorus nutrition on soluble phosphatase activities in onion roots. Physiol Vég 14: 833–841Google Scholar
  37. Gianinazzi-Pearson V, Gianinazzi S (1983) The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil 71: 197–209CrossRefGoogle Scholar
  38. Gianinazzi-Pearson V, Gianinazzi S (1988) Phosphorus metabolism in mycorrhizas. In: Boddy L, Marchand R, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. Cambridge University Press, Cambridge, pp 227–241Google Scholar
  39. Gianinazzi-Pearson V, Fardeau J-C, Asimi S, Gianinazzi S (1981) Source of additional phosphorus absorbed from soil by vesicular-arbuscular mycorrhizal soybeans. Physiol Vég 19: 33–43Google Scholar
  40. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84: 489–500CrossRefGoogle Scholar
  41. Graham JH, Sylvertsen JP (1985) Host determinants of mycorrhizal dependency of Citrus rootstock seedlings. New Phytol 101: 667–676CrossRefGoogle Scholar
  42. Graham JH, Timmer LW (1984) Vesicular-arbuscular mycorrhizal development and growth response of rough lemon in soil and soilless media: effect of phosphorus source. J Am Soc Hortic Sci 109: 118–121Google Scholar
  43. Graham JH, Eissenstat DM, Drouillard DL (1991) On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct Ecol 5: 773–779CrossRefGoogle Scholar
  44. Graw D (1979) The influence of soil pH on the efficiency of vesicular-arbuscular mycorrhizae. New Phytol 82: 687–695CrossRefGoogle Scholar
  45. Guillemin JP, Gianinazzi S (1992) Fungicides interactions with VA fungi in Ananas comosus grown in a tropical environment. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Oxon, 381 ppGoogle Scholar
  46. Guillemin JP, Gianinazzi S, Gianinazzi-Pearson V (1991) L’endomycorhization de vitroplants d’Ananas comosus: mise en évidence d’un effet mycorhizien. Fruits 46: 355–358Google Scholar
  47. Guillemin JP, Gianinazzi S, Trouvelot A (1992) Screening of VA endomycorrhizal fungi for establishment of micropropagated pineapple plants. Agronomie 12: 831–836CrossRefGoogle Scholar
  48. Guillemin JP, Abdel-Fattah GM, Trouvelot A, Gianinazzi S, Gianinazzi-Pearson V (1993) Interactions between soil-applied fungicides, endomycorrhizal fungal activity and plant growth. Soil Sci (Trends in agricultural science) 1: 161–172Google Scholar
  49. Habte M, Turk D (1991) Response of two species of Cassia and Gliricidia sepium to vesicular-arbuscular mycorrhizal infection. Commun Soil Sci Plant Anal 22: 1861–1872CrossRefGoogle Scholar
  50. Hall IR (1988) Potential for exploiting vesicular-arbuscular mycorrhizas in agriculture. Adv Biotechnol Proce 9: 141–174Google Scholar
  51. Ikram A, Mahmud AW, Ghani MN, Ibrahim MT, Zainal AB (1992) Field nursery inoculation of Hevea brasiliensis Muell Arg. seedling rootstock with vesiculararbuscular mycorrhizal ( VAM) fungi. Plant Soil 145: 231–236Google Scholar
  52. Ingham EL, Molina R (1991) Interactions among mycorrhizal fungi, rhizosphere organisms, and plants. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. John Wiley, New York, pp 169–197Google Scholar
  53. Jasper DA, Abbott LK, Robin AD (1991) The effect of soil disturbance on vesiculararbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118: 471–476CrossRefGoogle Scholar
  54. Jeffries P, Dodds JC (1991) The use of mycorrhizal inoculants in forestry and agriculture. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology, vol 1. Soil and plants. Marcel Dekker, New York, pp 35–53Google Scholar
  55. Johnson NC, Pfleger FL (1992) Vesicular-arbuscular mycorrhizae and cultural stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy, Madison, pp 71–99Google Scholar
  56. Johnson CR, Joiner JN, Crews CE (1980) Effects of N, K, and Mg on growth and leaf nutrient composition of three container grown woody ornamentals inoculated with mycorrhizae. J Am Soc Hortic Sci 105: 286–288Google Scholar
  57. Khasa P, Furlan V, Fortin JA (1992) Response of some tropical plant species to endomycorrhizal fungi under field conditions. Trop Agric (Trinidad) 69: 279–283Google Scholar
  58. Koide R (1985) The nature of growth depression in sunflower caused by vesicular arbuscular mycorrhizal infection. New Phytol 99: 449–462CrossRefGoogle Scholar
  59. Kormanik PC, Bryan WC, Schultz RC (1980) Procedures and equipment for staining large numbers of plant roots for endomycorrhizal assay. Can J Microbiol 26: 536–538PubMedCrossRefGoogle Scholar
  60. Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92: 486–505CrossRefGoogle Scholar
  61. Koslowsky SD, Boerner RE (1989) Interactive effects of aluminium, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L. ( Poaceae ). Environ Pollut 61: 107–125Google Scholar
  62. Kough JL, Gianinazzi-Pearson V, Gianinazzi S (1987) Depressed metabolic activity of vesicular-arbuscular mycorrhizal fungi after fungicide applications. New Phytol 106: 707–715CrossRefGoogle Scholar
  63. Levy Y, Krikun J (1980) Effect of vesicular-arbuscular mycorrhiza on Citrus jambhiri water relations. New Phytol 85: 25–31CrossRefGoogle Scholar
  64. Lin MT, Lucena FB, Mattos MAM, Paiva M, Assis M, Caldas LS (1987) Greenhouse production of mycorrhizal plants of nine transplanted crops. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade: practical applications and research priorities. INVAM-Florida University, Gainesville, 281 ppGoogle Scholar
  65. Lovato P, Guillemin JP, Gianinazzi S (1992) Application of commercial arbuscular endomycorrhizal fungal inoculants to the establishment of micropropagated grapevine rootstock and pineapple plants. Agronomie 12: 873–880CrossRefGoogle Scholar
  66. Maluf AM, Silveira AP, Melo IS (1988) Influência da calagem e da micorriza vesículo-arbuscular no desenvolvimento de cultivares de leucena tolerante e intolerante ao alumínio. Rev bras Cienc Solo 12: 17–23Google Scholar
  67. Mazzitelli M, Shubert A (1989) Effect of several VAM endophytes and artificial substrates on in vitro propagated Vitis berlandieri x rupestris “1103” P. Agric Ecosyst Environ 29: 289–293CrossRefGoogle Scholar
  68. McGonigle TP, Evans DG, Miller MH (1990) Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiments. New Phytol 116: 629–636CrossRefGoogle Scholar
  69. McGraw AC, Schenck NC (1980) Growth stimulation of citrus, ornamental, and vegetable crops by selected mycorrhizal fungi. Proc Fla State Hortic Soc 93: 201–205Google Scholar
  70. Menge JA, Lembright H, Johnson ELV (1977) Utilization of mycorrhizal fungi in citrus nurseries. Proc Int Soc Citric 1: 129–132Google Scholar
  71. Menge JA, Labananuskas CK, Johnson ELV, Patt RG (1978) Partial substitution of mycorrhizal fungi for phosphorus fertilization in the greenhouse culture of citrus. Soil Sci Soc Am J 42: 926–930CrossRefGoogle Scholar
  72. Miller RM, Jastrow JD (1992) The role of mycorrhizal fungi in soil conservation. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy, Madison, WI, pp 29–44Google Scholar
  73. Miller DD, Bodmer M, Schüepp H (1989) Spread of endomycorrhizal colonization and effects on growth of apple seedlings. New Phytol 111: 51–60CrossRefGoogle Scholar
  74. Morandi D, Bailey JA, Gianinazzi-Pearson V (1984) Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol Plant Pathol 24: 357–364CrossRefGoogle Scholar
  75. Mosse B (1986) Mycorrhiza in sustainable agriculture. Biol Agric Hortic 3:191–209 Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77: 1045–1050Google Scholar
  76. National Research Council (1989) Alternative agriculture/committee on the role of alternative farming methods in modern production, board on agriculture. National Academy of Sciences (ed) National Academy Press, Washington, DCGoogle Scholar
  77. Nemec S (1992) Glomus intraradix effects on citrus rootstock seedling growth in various potting media. J Agric Sci 118:315–323Google Scholar
  78. Nemec S, Menge JA, Platt RG, Johnson ELV (1981) Vesicular-arbuscular mycorrhizal fungi associated with citrus in Florida and California and notes on their distribution and ecology. Mycologia 73: 112–127CrossRefGoogle Scholar
  79. Ojala JC, Jarrell WM, Menge JA, Johnson LV (1983) Comparison of soil phosphorus extractants as predictors of mycorrhizal dependency. Soil Sci Soc Am J 47: 958–962CrossRefGoogle Scholar
  80. O’Keefe DM, Sylvia DM (1991) Mechanisms of the vesicular-arbuscular mycorrhizal plant-growth response. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology, vol 1. Soil and plants. Marcel Dekker, New York, pp 35–53Google Scholar
  81. Paula MA, Urquiaga S, Siqueira JO, Döbereiner J (1992) Synergistic effects of vesicular-arbuscular mycorrhizal fungi and diazotrophic bacteria on nutrition and growth of sweet potato (Ipomoea batatas). Biol Fert Soils 14: 61–66CrossRefGoogle Scholar
  82. Paulitz TC, Linderman RG (1991) Mycorrhizal interactions with soil organisms. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology vol 1. Soil and plants. Marcel Dekker, New York, pp 77–129Google Scholar
  83. Parent S, Desjardins Y, Caron M, Lamarre M (1993) Growth of Asparagus transplants inoculated with vesicular-arbuscular mycorrhiza (VAM). In: Abstr 9th North American Conf on Mycorrhizae. University of Guelph, Guelph, OntarioGoogle Scholar
  84. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 158–160CrossRefGoogle Scholar
  85. Plenchette C, Furlan V, Fortin JA (1981) Growth stimulation of apple trees in unsterilized soil under field conditions with mycorrhizal inoculation. Can J Bot 59: 2003–2008CrossRefGoogle Scholar
  86. Porter WM (1979) The “Most Probable Number” method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17: 515–519CrossRefGoogle Scholar
  87. Poss JA, Pond E, Menge JA, Jarrell WM (1985) Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88: 307–319CrossRefGoogle Scholar
  88. Rabatin SC, Stinner BR (1991) Vesicular arbuscular mycorrhizae, plant, and invertebrate interactions in soil. In: Barbosa P, Lrischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. John Wiley, New York, pp 141–167Google Scholar
  89. Ravolanirina F, Blal B, Gianinazzi S, Gianinazzi-Pearson V (1989a) Mise au point d’une méthode rapide d’endomycorhization des fruits micropropagés. Fruits 44: 165–170Google Scholar
  90. Ravolanirina F, Gianinazzi S, Trouvelot A, Carre M (1989b) Production of endomycorrhizal explants of micropropagated grapevine rootstocks. Agric Ecosyst Environ 29: 323–327CrossRefGoogle Scholar
  91. Reddel P, Spain AS (1991) Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23: 767–774CrossRefGoogle Scholar
  92. Salamanca CP, Herrera MA, Barea JM (1992) Mycorrhizal inoculation of micro-propagated woody legumes used in revegetation programmes for desertified Mediterranean ecosystems. Agronomie 12: 869–872CrossRefGoogle Scholar
  93. Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micro-propagated woody plant species (Vitis vinifera, L. ). Ann Bot 68: 135–141Google Scholar
  94. Schubert A, Bodrino C, Gribaudo I (1992) Vesicular-arbuscular mycorrhizal inoculation of kiwifruit (Actinidia deliciosa) microprogated plants. Agronomie 12: 847–850CrossRefGoogle Scholar
  95. Schüepp H, Bodmer M (1991) Complex responses of VA-mycorrhizae to xenobiotic substances. Toxicol Environ Chem 30: 193–199CrossRefGoogle Scholar
  96. Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agro-systems. Gesellschaft für Technische Zusammenarbeit (GTZ), Rossdorf, GermanyGoogle Scholar
  97. Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: effects of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17: 177–188CrossRefGoogle Scholar
  98. Souza CAS, Siqueira JO, Oliveira E, Carvalho JG (1991) Development and nutrient levels of coffee seedlings inoculated with mycorrhizal fungi. Effect of organic matter and simple superphosphate. Pesqui Agropecu Bras 26: 1989–2005Google Scholar
  99. Stahl PD, Christensen M (1991) Population variation in the mycorrhizal fungus Glomus mosseae: breadth of environmental tolerance. Mycol Res 95: 300–307CrossRefGoogle Scholar
  100. St John TV (1980) Root size, root hairs and mycorrhizal infection: a re-examination of Baylis’s hypothesis with tropical trees. New Phytol 84: 483–487CrossRefGoogle Scholar
  101. Sylvia DM, Jarstfer AG (1992) Sheared root inocula of vesicular-arbuscular mycorrhizal fungi. Appl Environ Microbiol 58: 229–232PubMedGoogle Scholar
  102. Sylvia DM, Williams SE (1992) Vesicular arbuscular mycorrhizae and environmental stress. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. American Society of Agronomy, Madison, WI, pp 101–124Google Scholar
  103. Tinker PB, Gildon A (1983) Mycorrhizal fungi and ion uptake. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilisation by plants. Academic Press, London, pp 21–32Google Scholar
  104. Tisdall JM (1991) Fungal hypahe and structural stability of the soil. Aust J Soil Res 29: 729–743CrossRefGoogle Scholar
  105. Tisserant B (1991) L’endomycorhization VA des ligneux: architecture racinaire et acitivité fonctionelle de la symbiose mycorhizienne. PhD Thesis, Université de Bourgogne, DijonGoogle Scholar
  106. Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollote A (1992a) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular endomycorrhizal infections. Mycol Res 97: 245–250CrossRefGoogle Scholar
  107. Tisserant B, Schellenbaum L, Gianinazzi-Pearson V, Gianinazzi S, Berta G (1992b) Influence of infection by an endomycorrhizal fungus on root development and architecture in Platanus acerifolia. Allionia 30: 171–181Google Scholar
  108. Tommerup IC, Bett KB (1985) Cryopreservation of genotypes of VA mycorrhizal fungi. In: Molina R (ed) 6th North American Conf on Mycorrhizae. Forest Research Laboratory, Corvallis, OR, 235 ppGoogle Scholar
  109. Tommerup IC, Kidby DK (1979) Preservation of spores of vesicular arbuscular endophytes by L-drying. Appl Environ Microbiol 37: 831–835PubMedGoogle Scholar
  110. Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Annu Rev Phytopathol 22: 331–359CrossRefGoogle Scholar
  111. Treeby MT (1992) The role of mycorrhizal fungi and non-mycorrhizal microorganisms in iron nutrition of citrus. Soil Biol Biochem 24: 857–864CrossRefGoogle Scholar
  112. Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1982) Les endomycorrhizes en agriculture; recherches sur le blé. In: Mycorrhizae, an integral part of plants: biology and perspectives for their use. INRA, Paris, pp 251–257Google Scholar
  113. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de méthodes ayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. Proc 1st Eur Symp on Mycorrhizae. Institut National de la Recherche Agronomique, Paris, pp 217–221Google Scholar
  114. Utkhede RS, Li TSC, Smith EM (1992) The effect of Glomus mosseae and Enterobacter aerogenes on apple seedlings grown in apple replant disease soil. J Phytopathol 135: 281–288CrossRefGoogle Scholar
  115. Vestberg M (1992) Arbuscular mycorrhizal inoculation of micrcpropagated strawberry and field observations in Finland. Agronomie 12: 865–867CrossRefGoogle Scholar
  116. Vidal MT, AzcOn-Aguilar C, Barea JM, Pliego-Alfaro F (1992) Mycorrhizal inoculation enhances growth and development of micropropagated plants of avocado. Hortic Sci 27: 785–787Google Scholar
  117. Walker C (1992) Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales): a possible way forward. Agronomie 12: 887–897CrossRefGoogle Scholar
  118. Williams PG (1990) Disinfecting vesicular-arbuscular mycorrhizas. Mycol Res 94: 995–997CrossRefGoogle Scholar
  119. Williams SCK, Vestberg M, Uosukainen M, Dodd JC, Jeffries P (1992) Effects of fertilizer and arbuscular mycorrhizal fungi on the post-vitro growth of micro-propagated strawberry. Agronomie 12: 851–857CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • P. E. Lovato
    • 1
    • 3
  • H. Schüepp
    • 2
  • A. Trouvelot
    • 3
  • S. Gianinazzi
    • 3
  1. 1.Centro de Ciências AgráriasUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  2. 2.Swiss Federal Research StationWädenswilSwitzerland
  3. 3.Laboratoire de PhytoparasitologieINRA/CNRSDijon CédexFrance

Personalised recommendations