Advertisement

Ribozyme in der molekularen Medizin

  • Olaf Heidenreich
  • Fritz Eckstein
Part of the Handbuch der Molekularen Medizin book series (HDBMOLEK, volume 1)

Zusammenfassung

Ribozyme sind RNA-Moleküle mit enzymatischer Aktivität, die Anfang der 80er Jahre durch die Untersuchung von RNA-Prozessierung entdeckt wurden. Mehrere unterschiedliche RNAs, wie bestimmte Introns, die RNA-Untereinheit der RNase P oder die selbstspaltenden RNAs von Pflanzenviroiden, sind bisher in der Literatur beschrieben worden. Die bis jetzt beschriebenen Aktivitäten von Ribozymen umfassen im wesentlichen die Spaltung und Ligierung von RNA-Molekülen. Insbesondere aufgrund ihrer Fähigkeit, RNA sequenzspezifisch zu spalten, wurden Ribozyme schon bald zur Regulation der Genexpression in Zellkulturen eingesetzt. Mittlererweile stehen bereits transgene Tiere, die Ribozyme exprimieren, zur Verfügung, und Ansätze, die HIV-Infektion mit Ribozymen zu behandeln, stehen an der Schwelle zu klinischen Studien. Ribozyme können in der Zelle von vorher eingebrachten DNA-Sequenzen endogen transkribiert werden oder aber, wie Antisenseoligonukleotide, Zellen von außen (exogen) zugeführt werden. Während der 1. Fall ein gentherapeutischer Ansatz ist, wird im 2. Fall eine Droge verabreicht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Altman S (1990) Enzymatic cleavage of RNA by RNA. Angew Chem Int Ed Engl 29:749–758Google Scholar
  2. Aurup H, Tuschl T, Benseler F, Ludwig J, Eckstein F (1994) Oligonucleotide duplexes containing 2′-amino-2′-deoxy-cytidines: thermal stability and chemical reactivity. Nucleic Acids Res 22:20–24PubMedGoogle Scholar
  3. Bassi G S, Møllegard N-E, Murchie A I H, Kitzing E von, Lilley D M J (1995) Ionic interactions and the global conformations of the hammerhead ribozyme. Nat Struct Biol 2:45–55PubMedGoogle Scholar
  4. Been M D (1994) Cis-and trans-acting ribozymes from a human pathogen, hepatitis delta virus. Trends Biochem 19:251–256Google Scholar
  5. Beigelman L, McSwiggen J A, Draper K G, Gonzalez C, Jensen K, Karpeisky A M, Modak A S, Matulic-Adamic J, Di-Renzo A B, Haeberli P S D, Tracz D, Grimm S, Wincott F E, Thackray V G, Usman N (1995) Chemical modification of hammerhead ribozymes. J Biol Chem 270:25702–25708PubMedGoogle Scholar
  6. Benseler F, Fu D-J, Ludwig J, McLaughlin L W (1993) Hammerhead-like molecules containing non-nucleoside linkers are active RNA catalysts. J Am Chem Soc 115:8483–8484Google Scholar
  7. Bertrand E L, Rossi J J (1994) Facilitation of hammerhead ribozyme catalysis by the nucleocapsid protein of HIV-1 and the heterogeneous nuclear protein Al. EMBO J 13:2904–2912PubMedGoogle Scholar
  8. Bertrand E, Pictet R, Grange T (1994) Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucleic Acids Res 22:293–300PubMedGoogle Scholar
  9. Berzal-Herranz A, Joseph S, Chowrira B M, Butcher S E, Burke J M (1993) Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J 12:2567–2574PubMedGoogle Scholar
  10. Branch A D, Robertson H D (1991) Efficient trans cleavage and a common structural motif for the ribozymes of the human hepatitis delta agent. Proc Natl Acad Sci USA 88:10163–10167PubMedGoogle Scholar
  11. Bratty J, Chartrand P, Ferbeyre G, Cedergren R (1993) The hammerhead RNA domain, a model ribozyme. Biochim Biophys Acta 1216:345–359PubMedGoogle Scholar
  12. Breaker R R, Joyce G F (1995) A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Chem Biol 2:655–660PubMedGoogle Scholar
  13. Bruening G (1989) Compilation of self-cleaving sequences from plant virus satellite RNAs and other sources. Methods Enzymol 180:546–558PubMedGoogle Scholar
  14. Buzayan J M, Gerlauch W L, Bruening G (1986) Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323:349–353Google Scholar
  15. Cameron F H, Jennings P A (1989) Specific gene suppression by engineered ribozymes in monkey cells. Proc Natl Acad Sci USA 86:9139–9143PubMedGoogle Scholar
  16. Campbell T B, Cech T R (1995) Identification of ribozymes within a ribozyme library that efficiently cleave a long substrate RNA. RNA 1:598–609PubMedGoogle Scholar
  17. Cantor G H, McElwain T F, Birkebak T A, Palmer G H (1993) Ribozyme cleave rex/tax mRNA and inhibits bovine leukemia virus expression. Proc Natl Acad Sci USA 90:10932–10936PubMedGoogle Scholar
  18. Cech T R (1990) Self-splicing and enzymatic activity of an intervening sequence RNA from tetrahymena. Angew Chem Int Ed Engl 29:759–768Google Scholar
  19. Chen C J, Banerjea A C, Harmison G G, Haglund K, Schubert M (1992) Multitarget-ribozyme directed to cleave at up to nine highly conserved HIV-1 env RNA regions inhibits HIV-1 replication — potential effectiveness against most presently sequenced HIV-1 isolates. Nucleic Acids Res 20:4581–4589PubMedGoogle Scholar
  20. Chiang M-Y, Chan H, Zounes M A, Freier S M, Lima W F, Bennet C F (1991) Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem 266:18162–18171PubMedGoogle Scholar
  21. Chowrira B M, Berzal-Herranz A, Burke J M (1991) Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature 354:320–322PubMedGoogle Scholar
  22. Cotten M, Birnstiel M L (1989) Ribozyme mediated destruction of RNA in vivo. EMBO J 8:3861–3866PubMedGoogle Scholar
  23. Cotten M, Schaffner G, Birnstiel M L (1989) Ribozyme, anti-sense RNA, and antisense DNA inhibition of U7 small nuclear ribonucleoprotein-mediated histone pre-mRNA processing in vitro. Mol Cell Biol 9:4479–4487PubMedGoogle Scholar
  24. Crisell P, Thompson S, James W (1993) Inhibition of HIV-1 replication by ribozymes that show poor activity in vitro. Nucleic Acids Res 21:5251–5255PubMedGoogle Scholar
  25. Czubayko F, Riegel AT, Wellstein A (1994) Ribozyme-targeting elucidates a direct role of pleiotrophin in tumor growth. J Biol Chem 269:21358–21363PubMedGoogle Scholar
  26. Dahm S C, Uhlenbeck O C (1991) Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30:9464–9469PubMedGoogle Scholar
  27. Denman R B (1993) Using RNA FOL D to predict the activity of small catalytic RNAs. Biotechniques 15:1090–1094PubMedGoogle Scholar
  28. Denman R B, Purow B, Rubenstein R, Miller D L (1992) Hammerhead ribozyme cleavage of hamster prion pre-mRNA in complex cell-free model systems. Biochem Biophys Res Commun 186:1171–1177PubMedGoogle Scholar
  29. Dorai T, Kobayashi H, Holland J F, Ohnuma T (1994) Modulation of platelet-derived growth factor-β mRNA expression and cell growth in a human mesothelioma cell line by a hammerhead ribozyme. Mol Pharmacol 46:437–444PubMedGoogle Scholar
  30. Dropulic B, Lin N H, Martin M, Jeang K-T (1992) Functional characterization of a U5 ribozyme: intracellular suppression of human immunodeficiency virus type 1 expression. J Virol 66:1432–1441PubMedGoogle Scholar
  31. Eckstein F (1985) Nucleoside phosphorothioates. Annu Rev Biochem 54:367–402PubMedGoogle Scholar
  32. Eckstein F, Lilley D M J (ed) (1996) Nucleic acids, molecular biology, vol 10. RNA catalysis. Springer, Berlin Heidelberg New YorkGoogle Scholar
  33. Efrat S, Leiser M, Wu Y-J, Fusco-DeMaine D, Emran O A, Surana M, Jetton T L, Magnuson M A, Weir G, Fleischer N (1994) Ribozyme-mediated attenuation of pancreatic β-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion. Proc Natl Acad Sci USA 91:2051–2055PubMedGoogle Scholar
  34. Ellis J, Rogers J (1993) Design and specicifity of hammerhead ribozymes against calretinin mRNA. Nucleic Acids Res 21:5171–5178PubMedGoogle Scholar
  35. Epstein L M, Gall J G (1987) Self-cleaving transcripts of satellite DNA from the newt. Cell 48:535–543PubMedGoogle Scholar
  36. Feldstein P A, Buzayan J M, Bruening G (1989) Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene 82:53–61PubMedGoogle Scholar
  37. Feng M, Cabrera G, Deshane J, Scanlon K, Curiel D T (1995) Neoplastic reversion accomplished by high efficiency adenoviral-mediated delivery of an anti-ras ribozyme. Cancer Res 55:2024–2028PubMedGoogle Scholar
  38. Forster A C, Symons R H (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active site. Cell 49:211–220PubMedGoogle Scholar
  39. Funato T, Shitara T, Tone T, Jiao L, Kashani-Sabet M, Scanlon K J (1994) Suppression of H-ras-mediated transformation in NIH3T3 cells by a ras ribozyme. Biochem Pharmacol 48:1471–1475PubMedGoogle Scholar
  40. Goodchild J, Kohli V (1991) Ribozymes that cleave an RNA sequence from human immunodeficiency virus: the effect of flanking sequence on rate. Arch Biochem Biophys 284:386–391PubMedGoogle Scholar
  41. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769PubMedGoogle Scholar
  42. Gottlieb P A, Prasad Y, Smith J B, Williams A P, Dinter-Gott-lieb G (1994) Evidence that alternate foldings of the hepatitis δ RNA confer varying rates of self-cleavage. Biochemistry 33:2802–2808PubMedGoogle Scholar
  43. Guo H C T, Collins R A (1995) Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from neurospora VS RNA. EMBO J 14:368–376PubMedGoogle Scholar
  44. Guo H C T, De Abreu D M, Tillier E R M, Saville B J, Olive J E, Collins R A (1993) Nucleotide sequence requirements for self-cleavage of neurospora VS RNA. J Mol Biol 232:351–361PubMedGoogle Scholar
  45. Hampel A, Tritz R (1989) RNA catalytic properties of the minimum (‒)sTRSV sequence. Biochemistry 28:4929–4933PubMedGoogle Scholar
  46. Haseloff J, Gerlach W L (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334:585–591PubMedGoogle Scholar
  47. Heidenreich O, Eckstein F (1992) Hammerhead ribozymemediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1. J Biol Chem 267:1904–1909PubMedGoogle Scholar
  48. Heidenreich O, Pieken W, Eckstein F (1993) Chemically modified RNA: approaches and applications. FASEB J 7:90–96PubMedGoogle Scholar
  49. Heidenreich O, Benseler F, Fahrenholz A, Eckstein F (1994) High activity and stability of hammerhead ribozymes containing 2′-modified pyrimidine nucleosides and phosphorothioates. J Biol Chem 269:2131–2138PubMedGoogle Scholar
  50. Heidenreich O, Kang S-H, Brown D A, Xu X, Swiderski P, Rossi J J, Eckstein F, Nerenberg M (1995a) Ribozyme-mediated RNA degradation in nuclei suspension. Nucleic Acids Res 23:2223–2228PubMedGoogle Scholar
  51. Heidenreich O, Kang S-H, Xu X, Nerenberg M (1995b) Application of antisense technology to therapeutics. Mol Med Today 1:128–133PubMedGoogle Scholar
  52. Heidenreich O, Xu X, Nerenberg M (1996a) A hammerhead ribozyme cleaves its target RNA during RNA preparation. Antisense Nucleic Acid Drug Dev 6:141–144PubMedGoogle Scholar
  53. Heidenreich O, Xu X, Swiderski P, Rossi JJ, Nerenberg M (1996b) Correlation of activity with stability of chemically modified ribozymes in nuclei suspension. Antisense Nucleic Acid Drug Dev 6:111–118PubMedGoogle Scholar
  54. Heinrich J C, Tabler M, Louis C (1993) Attenuation of white gene expression in transgenic drosophila melanogaster: possible role of a catalytic antisense RNA. Dev Genet 14:258–265PubMedGoogle Scholar
  55. Hendry P, McCall M J, Santiago F S, Jennings PA (1992) A ribozyme with DNA in the hybridising arms displays enhanced cleavage ability. Nucleic Acids Res 20:5737–5741PubMedGoogle Scholar
  56. Herschlag D (1991) Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: more isn’t always better. Proc Natl Acad Sci USA 88:6921–6925PubMedGoogle Scholar
  57. Herschlag D, Khosla M, Tsuchihashi Z, Karpel R L (1994) An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J 13:2913–2924PubMedGoogle Scholar
  58. Hertel K J, Herschlag D, Uhlenbeck O C (1994) A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 33:3374–3385PubMedGoogle Scholar
  59. Holm P S, Scanlon K J, Dietel M (1994) Reversion of multi-drug resistance in the P-glycoprotein-positive human pancreatic cell line (EPP85-181RDB) by introduction of a hammerhead ribozyme. Br J Cancer 70:239–243PubMedGoogle Scholar
  60. Homann M, Tzortzakaki S, Rittner K, Sczakiel G, Tabler M (1993) Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1. Nucleic Acids Res 21:2809–2814PubMedGoogle Scholar
  61. Joseph S, Burke J M (1993) Optimization of an anti-HIV hairpin ribozyme by in vitro selection. J Biol Chem 268:24515–24518PubMedGoogle Scholar
  62. Kiehntopf M, Brach M A, Licht T, Petschauer S, Karawajew L, Kirschning C, Herrmann F (1994) Ribozyme-mediated cleavage of the MDR-1 transcript restores chemosensitivity in previously resistant cancer cells. EMBO J 13:4645–4652PubMedGoogle Scholar
  63. Kiehntopf M, Esquivel E L, Brach M A, Herrmann F (1995a) Ribozymes: biology, biochemistry, and implications for clinical medicine. J Mol Med 73:65–71PubMedGoogle Scholar
  64. Kiehntopf M, Herrmann F, Brach M A (1995b) Functional NF-IL6/C CAAT enhancer-binding protein is required for tumor necrosis factor α-inducible expression of the granulocyte colony-stimulating factor (CS F), but not the granulocyte/macrophage CS F or interleukin 6 gene in human fibroblasts. J Exp Med 181:793–798PubMedGoogle Scholar
  65. Kobayashi H, Kim N, Halatsch M-E, Ohnuma T (1994) Specificity of ribozyme designed for mutated DHFR mRNA. Biochem Pharmacol 47:1607–1613PubMedGoogle Scholar
  66. Koizumi M, Kamiya H, Ohtsuka E (1992) Ribozymes designed to inhibit transformation of NIH3T3 cells by the activated c-Ha-ras gene. Gene 117:179–184PubMedGoogle Scholar
  67. Kumar P K R, Taira K, Nishikawa S (1994) Chemical probing studies of variants of the genomic hepatitis delta virus ribozyme by primer extension analysis. Biochemistry 33:583–592PubMedGoogle Scholar
  68. L’Huillier P J, Davis S R, Bellamy A R (1992) Cytoplasmic delivery of ribozymes leads to efficient reduction in itα-lactalbumin mRNA levels in C127I mouse cells. EMBO J 11:4411–4418PubMedGoogle Scholar
  69. Lange W, Cantin E M, Finke J, Dölken G (1993) In vitro and in vivo effects of synthetic ribozymes targeted against BCR/A BL mRNA. Leukemia 7:1786–1794PubMedGoogle Scholar
  70. Lange W, Daskalatis M, Finke J, Dölken G (1994) Comparison of different ribozymes for efficient and specific cleavage of BCR/A BL related mRNAs. F EBS Lett 338:175–178PubMedGoogle Scholar
  71. Larsson S, Hotchkiss G, Andäng M, Nyholm T, Inzunza J, Jansson I, Ährlund-Richter L (1994) Reduced itβ2-micro-globulin mRNA levels in transgenic mice expressing a designed hammerhead ribozym. Nucleic Acids Res 22:2242–2248PubMedGoogle Scholar
  72. Lehman N, Joyce G F (1993) Evolution in vitro of an RNA enzyme with altered metal dependence. Nature 361:119–120Google Scholar
  73. Leopold L H, Shore S K, Newkirk T A, Reddy R M V, Reddy E P (1995) Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemias. Blood 85:2162PubMedGoogle Scholar
  74. Lieber A, Strauss M (1995) Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library. Mol Cell Biol 15:540–551PubMedGoogle Scholar
  75. Lo K M, Biasolo M A, Dehni G, Palu G, Haseltine W A (1992) Inhibition of replication of HIV-1 by retroviral vectors expression tat-antisense and anti-tat ribozyme RNA. Virology 190:176–183PubMedGoogle Scholar
  76. Lyngstadaas S P, Risnes S, Sproat B S, Thrane P S, Prydz H P (1995) A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo. EMBO J 14:5224–5229PubMedGoogle Scholar
  77. Mahieu M, Deschuyteneer R, Forget D, Vandenbussch P, Content J (1994) Construction of a ribozyme directed against human interleukin-6 mRNA: evaluation of its catalytic activity in vitro and in vivo. Blood 84:3758–3765PubMedGoogle Scholar
  78. Marschall P, Thomson J B, Eckstein F (1994) Inhibition of gene expression with ribozymes. Cell Mol Neurobiol 14:523–538PubMedGoogle Scholar
  79. Michels W J, Pyle A M (1995) Conversion of a group II intron into a new multiple turnover ribozyme that selectively cleaves oligonucleotides: elucidation of a reaction mechanism and structure/function relationships. Biochemistry 34:2965–2977PubMedGoogle Scholar
  80. Monia B P, Lesnik E A, Gonzalez C, Lima W F, McGee D, Guinosso C J, Kawasaki A M, Cook P D, Freier S M (1993) Evaluation of 2′-modified oligonudeotides containing 2′-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem 268:14514–14522PubMedGoogle Scholar
  81. Mueller M W, Hetzer M, Schweyen R J (1993) Group II intron RNA catalysis of progressive nucleotide insertion: a model for RNA editing. Science 261:1035–1038PubMedGoogle Scholar
  82. Müller G, Strack B, Dannull J, Sproat B S, Surovoy A, Jung G, Moelling K (1994) Amino acid requirements of the nucleocapsid protein of HIV-1 for increasing catalytic activity of a Ki-ras ribozyme in vitro. J Mol Biol 242:422–429PubMedGoogle Scholar
  83. Nakamaye K L, Eckstein F (1994) AUA-deaving hammerhead ribozymes: attempted selection for improved cleavage. Biochemistry 33:1271–1277PubMedGoogle Scholar
  84. Ohkawa J, Yuyama N, Takebe Y, Nishikawa S, Taira K (1993) Importance of independence in ribozyme reactions: kinetic behaviour of trimmed and of simply connected multiple ribozymes with potential activity against human immunodeficiency virus. Proc Natl Acad Sci USA 90:11302–11306PubMedGoogle Scholar
  85. Ojwang J O, Hampel A, Looney D J, Wong-Staal F, Rappaport J (1992) Inhibition of human immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc Natl Acad Sci USA 89:10802–10806PubMedGoogle Scholar
  86. Paolella G, Sproat B S, Lamond A I (1992) Nuclease resistant ribozymes with high catalytic activity. EMBO J 11:1913–1919PubMedGoogle Scholar
  87. Perreault J P, Wu T, Cousineau B, Ogilvie K K, Cedergren R (1990) Mixed deoxyribo-and ribooligonucleotides with catalytic activity. Nature 344:565–567PubMedGoogle Scholar
  88. Perrotta A T, Been M D (1991) A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature 350:434–436PubMedGoogle Scholar
  89. Pieken W A, Olsen D B, Benseler F, Aurup H, Eckstein F (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 253:314–317PubMedGoogle Scholar
  90. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269:12918–12924PubMedGoogle Scholar
  91. Pley H W, Flaherty K M, McKay D B (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372:68–74PubMedGoogle Scholar
  92. Prody G A, Bakos J T, Buzayan J M, Schneider I R, Bruening G (1986) Autolytic processing of dimeric plant virus satellite RNA. Science 231:1577–1580PubMedGoogle Scholar
  93. Puttaraju M, Perrotta A T, Been M D (1993) A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res 21:4253–4258PubMedGoogle Scholar
  94. Rittner K, Burmester C, Sczakiel G (1993) In vitro selection of fast-hybridizing and effective antisense RNAs directed against the human immunodeficiency virus type 1. Nucleic Acids Res 21:1381–1387PubMedGoogle Scholar
  95. Rossi J J (1995) Controlled, targeted, intracellular expression of ribozymes: progress and problems. Trends Biotechnol 13:301–306PubMedGoogle Scholar
  96. Ruffner D E, Uhlenbeck O C (1990) Thiophosphate interference experiments locate phosphates important for the hammerhead RNA self-cleavage reaction. Nucleic Acids Res 18:6025–6029PubMedGoogle Scholar
  97. Ruffner D E, Stormo G D, Uhlenbeck O C (1990) Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29:10695–10702PubMedGoogle Scholar
  98. Sargueil B, Pecchia D B, Burke J M (1995) An improved version of the hairpin ribozyme functions as a ribonucleoprotein complex. Biochemistry 34:7739–7748PubMedGoogle Scholar
  99. Sarver N, Cantin E M, Chang P S, Zaia J A, Ladne P A, Stephens D A, Rossi J J (1990) Ribozymes as potential anti-HIV-1 therapeutic agents. Science 247:1222–1225PubMedGoogle Scholar
  100. Scanlon K J, Ishida H, Kashani-Sabet M (1994) Ribozymemediated reversal of the multidrug-resistant phenotype. Proc Natl Acad Sci USA 91:11123–11127PubMedGoogle Scholar
  101. Schmelzer C, Schweyen R J (1986) Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhitibition of lariat formation. Cell 46:557–565PubMedGoogle Scholar
  102. Scott W G, Finch J T, Klug A (1995) The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81:991–1002PubMedGoogle Scholar
  103. Sczakiel G (1994) Antisense strategies for the control of aberrant gene expression. J Hematother 3:305–313PubMedGoogle Scholar
  104. Sczakiel G, Goody R S (1994) Antisense principle or ribozyme action? Biol Chem Hoppe Seyler 375:745–746PubMedGoogle Scholar
  105. Sczakiel G, Nedbal W (1995) The potential of ribozymes as antiviral agents. Trends Microbiol 3:213–217PubMedGoogle Scholar
  106. Sczakiel G, Homann M, Rittner K (1993) Computer-aided search for effective antisense RNA target sequences of the human immunodeficiency virus type 1. Antisense Res Dev 3:45–52PubMedGoogle Scholar
  107. Shimayama T, Nishikawa F, Nishikawa S, Taira K (1993) Nudease-resistant chimeric ribozymes containing deoxyribonucleotides and phosphorothioate linkages. Nucleic Acids Res 21:2605–2611PubMedGoogle Scholar
  108. Shimayama T, Nishikawa S, Taira K (1995) Generality of the NUX rule: kinetic analysis of the results of systematic mutations in the trinucleotide at the cleavage site of the hammerhead ribozyme. Biochemistry 34:3649–3654PubMedGoogle Scholar
  109. Shore S K, Nabissa P M, Reddy E P (1993) Ribozyme-mediated cleavage of the BCRA BL oncogene transcript: in vitro cleavage of RNA and in vivo loss of p210 protein-kinase activity. Oncogene 8:3183–3188PubMedGoogle Scholar
  110. Sioud M (1994) Interaction between tumour necrosis factor a, ribozyme, and cellular proteins. J Mol Biol 242:619–629PubMedGoogle Scholar
  111. Sioud M, Natvig J B, Førre ø (1992) Preformed ribozyme destroys tumour necrosis factor mRNA in human cells. J Mol Biol 223:831–835PubMedGoogle Scholar
  112. Slim G, Gait M J (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res 19:1183–1188PubMedGoogle Scholar
  113. Snyder D S, Wu Y, Wang J L, Rossi J J, Swiderski P, Kaplan B E, Forman S J (1993) Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosomepositive cell line. Blood 82:600–605PubMedGoogle Scholar
  114. Stein C A, Cheng Y-C (1993) Antisense oligonucleotides as therapeutic agents — Is the bullet really magical? Science 261:1004–1012PubMedGoogle Scholar
  115. Stürzl M, Brandstetter H, Zietz C, Eisenburg B, Faivich G, Gearing D P, Brockmeyer N H, Hofschneider P H (1995) Identification of interleukin-1 and platelet-derived growth factor-B as major mitogens for spindle cells of Kaposi’s sarcoma: a combined in vitro and in vivo analysis. Oncogene 10:2007–2016PubMedGoogle Scholar
  116. Sullenger B A, Cech T R (1993) Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262:1566–1569PubMedGoogle Scholar
  117. Sullenger B A, Cech T R (1994) Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 371:619–622PubMedGoogle Scholar
  118. Sun L-Q, Warrilow D, Wang L, Witherington C, MacPherson J, Symonds G (1994) Ribozyme-mediated suppression of moloney murine leukemia virus and human immunodeficiency virus type I replication in permissive cell lines. Proc Natl Acad Sci USA 91:9715–9719PubMedGoogle Scholar
  119. Sun L Q, Pyati J, Smythe J, Wang L, MacPherson J, Gerlach W, Symonds G (1995a) Resistance to human immunodeficiency virus type 1 infeciton conferred by transduction of human peripheral blood lymphocytes with ribozyme, antisense, or polymeric trans-activation response element constructs. Proc Natl Acad Sci USA 92:7272–7276PubMedGoogle Scholar
  120. Sun L Q, Wang L, Gerlach W L, Symonds G (1995b) Target sequence-specific inhibition of HIV-1 replication by ribozymes directed to tat RNA. Nucleic Acids Res 23:2909–2913PubMedGoogle Scholar
  121. Symons R H (1992) Small catalytic RNAs. Annu Rev Biochem 61:641–671PubMedGoogle Scholar
  122. Tanaka T, Akira S, Yoshida K, Umemoto M, Yoneda Y, Shirafuji N, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T (1995) Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell 80:353–361PubMedGoogle Scholar
  123. Tang X-B, Hobom G, Luo D (1994) Ribozyme mediated destruction of influenza A virus in vitro and in vivo. J Med Virol 42:385–395PubMedGoogle Scholar
  124. Taylor N R, Kaplan B E, Swiderski P, Li H, Rossi J J (1992) Chimeric DNA-RNA hammerhead ribozymes have enhanced in vitro catalytic efficiency and increased stability in vivo. Nucleic Acids Res 20:4559–4565PubMedGoogle Scholar
  125. Thompson J D, Ayers D F, Malmstrom T A, McKenzie T L, Ganousis L, Chowrira B M, Couture L, Stinchcomb D T (1995) Improved accumulation and activity of ribozymes expressed from a tRNA-based RNA polymerase III promoter. Nucleic Acids Res 23:2259–2268PubMedGoogle Scholar
  126. Thomson J B, Tuschl T, Eckstein F (1993) Activity of hammerhead ribozymes containing non-nucleotidic linkers. Nucleic Acids Res 21:5600–5603PubMedGoogle Scholar
  127. Tol H van, Buzayan J M, Feldstein P A, Eckstein F, Bruening G (1990) Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res 18:1971–1975PubMedGoogle Scholar
  128. Tsang J, Joyce G F (1994) Evolutionary optimization of the catalytic properties of a DNA-cleaving ribozyme. Biochemistry 33:5966–5973PubMedGoogle Scholar
  129. Tsuchihashi Z, Khosla M, Herschlag D (1993) Protein enhancement of hammerhead ribozyme catalysis. Science 262:99–102PubMedGoogle Scholar
  130. Tuschl T, Gohlke C, Jovin T M, Westhof E, Eckstein F (1994) A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266:785–789PubMedGoogle Scholar
  131. Uhlenbeck O C (1987) A small catalytic oligoribonucleotide. Nature 328:596–600PubMedGoogle Scholar
  132. Wagner E, Zenke M, Cotten M, Beug H, Birnstiel M (1990) Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc Natl Acad Sci USA 87:3410–3414PubMedGoogle Scholar
  133. Wagner E, Zatloukal K, Cotten M, Kirlappos H, Mechtler K, Curiel D T, Birnstiel M (1992) Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci USA 89:6099–6103PubMedGoogle Scholar
  134. Weizsäcker F von, Blum H E, Wands J R (1992) Cleavage of hepatitis B virus RNA by three ribozymes transcribed from a single DNA template. Biochem Biophys Res Commun 189:743–748Google Scholar
  135. Werner M, Uhlenbeck O C (1995) The effect of base mismatches in the substrate recognition helices of hammerhead ribozymes on binding and catalysis. Nucleic Acids Res 23:2092–2096PubMedGoogle Scholar
  136. Whitton J L (1994) Antisense treatment of viral infection. Adv Virus Res 44:267–303PubMedGoogle Scholar
  137. Williams D M, Pieken W A, Eckstein F (1992) Function of specific 2′-hydroxyl groups for efficient cleavage by a hammerhead ribozyme. Proc Natl Acad Sci USA 89:3985–3989Google Scholar
  138. Xing Z, Whitton J L (1992) Ribozymes which cleave arenavirus RNAs: identification of susceptible target sites and inhibition by target site secondary structure. J Virol 66:1361–1369PubMedGoogle Scholar
  139. Xing Z, Whitton J L (1993) An anti-lymphocytic choriomeningitis virus ribozyme expressed in tissue culture cells diminishes viral RNA levels and leads to a reduction in infectious virus yield. J Virol 67:1840–1847PubMedGoogle Scholar
  140. Xing Z, Mahadeviah S, Whitton J L (1995) Antiviral activity of RNA molecules containing self-releasing ribozymes targeted to lymphocytic choriomeningitis virus. Anti-sense Res Dev 5:203–212Google Scholar
  141. Yamada O, Kraus G, Leavitt M C, Yu M, Wong-Staal F (1994) Activity and cleavage site specificity of an anti-HIV-1 hairpin ribozyme in human T-cells. Virology 205:121–126PubMedGoogle Scholar
  142. Yang J-H, Usman N, Chartrand P, Cedergren R (1992) Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry 31:5005–5009PubMedGoogle Scholar
  143. Yu M, Ojwang J, Yamada O, Hampel A, Rapapport J, Looney D, Wong-Staal F (1993) A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 90:6340–6344PubMedGoogle Scholar
  144. Yu M, Leavitt M C, Maruyama M, Yamada O, Young D, Ho A D, Wong-Staal F (1995) Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92:699–703PubMedGoogle Scholar
  145. Yuan Y, Hwang E-S, Altman S (1992) Targeted cleavage of mRNA by human RNase P. Proc Natl Acad Sci USA 89:8006–8010PubMedGoogle Scholar
  146. Zabner J, Fasbender A J, Moninger T, Poellinger K A, Welsh M J (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem 270:18997–19007PubMedGoogle Scholar
  147. Zelphati O, Imbach J-L, Signoret N, Zon G, Rayner B, Leserman L (1994) Antisense oligonucleotides in solution or encapsulated in immunoliposomes inhibit replication of HIV-1 by several different mechanisms. Nucleic Acids Res 22:4307–4314PubMedGoogle Scholar
  148. Zhao J J, Pick L (1993) Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in drosophila. Nature 365:448–451PubMedGoogle Scholar
  149. Zoumadakis M, Tabler M (1995) Comparative analysis of cleavage rates after systematic permutation of the NUX consensus target motif for hammerhead ribozymes. Nucleic Acids Res 23:1192–1196PubMedGoogle Scholar
  150. Zoumadakis M, Neubert W J, Tabler M (1994) The influence of imperfectly paired helices I and III on the catalytic of hammerhead ribozymes. Nucleic Acids Res 22:5271–5278PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Olaf Heidenreich
  • Fritz Eckstein

There are no affiliations available

Personalised recommendations