Skip to main content

Increased Plant Fitness by Rhizobacteria

  • Chapter
Book cover Molecular Ecotoxicology of Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 170))

Abstract

About half of the recently fixed carbon in plant leaves is transported below ground where a substantial fraction is released by growing plant roots as exudates and lysates. These nutrients attract bacteria and fungi, which multiply in the rhizosphere to densities up to and exceeding 100 times those in the bulk soil (Lynch and Whipps 1991). Some of these microorganisms can reduce plant growth by acting as pathogens. However, other microorganisms can promote growth by alleviating growth-restricting conditions (Schippers et al. 1987; Glick et al. 1999). Plant growth-promoting rhizobacteria (PGPR) can affect plant growth and development in two different ways: indirectly or directly (Glick 1995; Glick et al. 1999). Indirect promotion of plant growth occurs when these bacteria decrease or prevent some of the deleterious effects of a pathogenic organism by any one or more of several different mechanisms. For example, production of antibiotics can interfere directly with growth and activity of deleterious soil microorganisms (Glick and Bashan 1997), whereas induction of resistance in the plant increases the plant’s defensive capacity (Van Loon et al. 1998). In addition, bacteria may reduce stresses resulting from the presence of toxic wastes by sequestering heavy metals or degrading organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, New York

    Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Alström S (1995) Evidence of disease resistance induced by rhizosphere pseudomonad against Pseudomonas syringae pv. phaseolicola. J Gen Appl Microbiol 41:315–325

    Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, Van Loon LC (2003) Understanding the involvement of rhizobacteria-mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5–9

    Google Scholar 

  • Bashan Y (1994) Symptom expression and ethylene production in leaf blight of cotton caused by Alternaria macrospora and Alternaria alternata alone and combined. Can J Bot 72:1574–1579

    CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-amino cyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    PubMed  CAS  Google Scholar 

  • Biles CL, Abeles FB, Wilson CL (1990) The role of ethylene in anthracnose of cucumber, Cucumis sativus, caused by Colletotrichum lagenarium. Phytopathology 80:732–736

    CAS  Google Scholar 

  • Bostock RM (1999) Signal conflicts and synergies in induced resistance to multiple attackers. Physiol Mol Plant Pathol 55:99–109

    Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322–326

    PubMed  CAS  Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181–197

    CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Campbell BG, Thomson JA (1996) 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiol Lett 138:207–210

    PubMed  CAS  Google Scholar 

  • Cohen R, Riov J, Lisker N, Katan J (1986) Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. sp. melonis. Phytopathology 76:1281–1285

    CAS  Google Scholar 

  • Cronshaw DK, Pegg GF (1976) Ethylene as a toxin synergist in Verticillium wilt of tomato. Physiol Plant Pathol 9:33–38

    CAS  Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Bio/Technology 6:282–286

    CAS  Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    PubMed  Google Scholar 

  • De Meyer G, Audenaert K, Höfte M (1999) Pseudomonas aeruginosa 7NSK2-induced systemic resistance in tobacco depends on in planta salicylic acid accumulation but is not associated with PR1a expression. Eur J Plant Pathol 105:513–517

    Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by non-pathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Google Scholar 

  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274

    Google Scholar 

  • Elad Y (1988) Involvement of ethylene in the disease caused by Botrytis cinerea on rose and carnation flowers and the possibility of control. Ann Appl Biol 113:589–598

    CAS  Google Scholar 

  • Elad Y (1990) Production of ethylene in tissues of tomato, pepper, French-bean and cucumber in response to infection by Botrytis cinerea. Physiol Mol Plant Pathol 36: 277–287

    CAS  Google Scholar 

  • Else MA, Jackson MB (1998) Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Aust J Plant Physiol 25:453–458

    CAS  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    PubMed  CAS  Google Scholar 

  • Felton GW, Korth KL (2000) Trade-offs between pathogen and herbivore resistance. Curr Opin Plant Biol 3:309–314

    PubMed  CAS  Google Scholar 

  • Felton GW, Korth KL, Bi JL, Wesley SV, Huhman DV, Mathews MC, Murphy JB, Lamb C, Dixon RA (1999) Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr Biol 9:317–320

    PubMed  CAS  Google Scholar 

  • Frankenberger WTJ, Arshad M (1995) Phytohormones in soil. Marcel Dekker, New York

    Google Scholar 

  • Fukuda H, Ogawa T, Tanase S (1993) Ethylene production by microorganisms. Adv Microbial Physiol 35:275–306

    CAS  Google Scholar 

  • Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32:11–29

    CAS  Google Scholar 

  • Giovanelli J, Mudd SH, Datko AH (1980) Sulfur amino acids in plants. In: Miflin BJ (ed) Amino acids and derivatives. The biochemistry of plants: a comprehensive treatise, vol 5. Academic Press, New York, pp 453–505

    Google Scholar 

  • Glandorf DCM, Peters LGL, Van der Sluis I, Bakker PAHM, Schippers B (1993) Crop specificity of rhizosphere pseudomonads and the involvement of root agglutinins. Soil Biol Biochem 25:981–989

    CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of fungal phytopathogens. Biotechnol Adv 15:353–378

    PubMed  CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12–2 do not stimulate canola root elongation. Can J Microbiol 40:911–915

    CAS  Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    CAS  Google Scholar 

  • Glick, BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose, DM (1999). Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Gómez-Gömez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  Google Scholar 

  • Gömez-Gömez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    PubMed  Google Scholar 

  • Grichko VP, Glick BR (2000) Identification of DNA sequences that regulate the expression of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate deaminase gene. Can J Microbiol 46:1159–1165

    PubMed  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  • Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894

    PubMed  CAS  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12–2. Isr J Plant Sci 44:37–42

    Google Scholar 

  • Hammerschmidt R, Métraux JP, Van Loon LC (2001) Inducing resistance: a summary of papers presented at the first international symposium on induced resistance to plant diseases, Corfu, May 2000. Eur J Plant Pathol 107:1–6

    Google Scholar 

  • Handelsman J, Stabb EV (1996) Biocontrol of soilborne plant pathogens. Plant Cell 8:1855–1869

    PubMed  CAS  Google Scholar 

  • Höfte M, Bigirimana J, De Meyer G, Audenaert K (2000) Induced systemic resistance in tomato, tobacco and bean by Pseudomonas aeruginosa 7NSK2: bacterial determinants, signal transduction pathways and role in host resistance. Oral Sessions of the 5th International Workshop on PGPR, Cordoba, Argentina, pp 108–113

    Google Scholar 

  • Hoffland E, Pieterse CMJ, Bik L, Van Pelt JA (1995) Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol Mol Plant Pathol 46:309–320

    CAS  Google Scholar 

  • Holguin G, Glick BR (2001) Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microbial Ecol 41:281–288

    CAS  Google Scholar 

  • Honma M (1985) Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1-carboxylate deaminase. Agric Biol Chem 49:567–571

    CAS  Google Scholar 

  • Honma M (1993) Stereospecific reaction of 1-aminocyclopropane-l-carboxylate deaminase. In: Pech JC, Latché A, Balagué C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer, Dordrecht, pp 111–116

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • Hyodo H (1991) Stress/wound ethylene. In: Mattoo AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, pp 65–80

    Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhi-zobacterium Pseudomonas putida GR12–2. Can J Microbiol 40:1019–1025

    CAS  Google Scholar 

  • Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549

    PubMed  CAS  Google Scholar 

  • John P (1991) How plant molecular biologists revealed a surprising relationship between two enzymes, which took an enzyme out of a membrane where it was not located, and put it into the soluble phase where it could be studied. Plant Mol Biol Reporter 9:192–194

    Google Scholar 

  • Kende H (1989) Enzymes of ethylene biosynthesis. Plant Physiol 91:1–4

    PubMed  CAS  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–307

    CAS  Google Scholar 

  • Klee HJ, Kishore GM (1992) Control of fruit ripening and senescence in plants. US patent number 5,702,933

    Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Google Scholar 

  • Kloepper JW, Tuzun S, Kuc JA (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Technol 2:349–351

    Google Scholar 

  • Knoester M, Pieterse CMJ, Bol JF, Van Loon LC (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant-Microbe Interact 12:720–727

    PubMed  CAS  Google Scholar 

  • Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur J Plant Pathol 107:523–533

    CAS  Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promotion research. Trends Biotechnol 7:215–219

    Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995a) Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur J Plant Pathol 101:655–664

    Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995b) Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    CAS  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance against fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149–155

    CAS  Google Scholar 

  • Li J, Glick BR (2001) Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Can J Microbiol 47:259–267

    Google Scholar 

  • Li J, Ovakim D, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101–105

    PubMed  CAS  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382

    PubMed  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1991) Substrate flow in the rhizosphere. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 15–24

    Google Scholar 

  • Ma W, Sebestianova SB, Sebestian J, Burd GL, Guinel FC, Glick BR (2003) Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. Antonie von Leeuwenhoek 83:285–291

    CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    PubMed  CAS  Google Scholar 

  • Mattoo AK, Suttle JC (eds) (1991) The plant hormone ethylene. CRC Press, Boca Raton

    Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    CAS  Google Scholar 

  • Meyer JM, Azelvandre P, Georges C (1992) Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHA0. BioFactors 4:23–27

    PubMed  CAS  Google Scholar 

  • Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112–1118

    PubMed  CAS  Google Scholar 

  • Mol JNM, Holton TA, Koes RE (1995) Floriculture: genetic engineering of commercial traits. Trends Biotechnol 13:350–355

    CAS  Google Scholar 

  • Morgan PW, Drew CD (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    CAS  Google Scholar 

  • Murphy AM, Chivasa S, Singh DP, Carr JP (1999) Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways? Trends Plant Sci 4:155–160

    PubMed  Google Scholar 

  • Naseby DC, Lynch JM (1998) Establishment and impact of Pseudomonas fluorescens genetically modified for lactose utilization and kanamycin resistance in the rhizosphere of pea. J Appl Microbiol 84:169–175

    CAS  Google Scholar 

  • Nayani S, Mayak S, Glick BR (1998) The effect of plant growth promoting rhizobacteria on the senescence of flower petals. Ind J Exp Biol 36:836–839

    Google Scholar 

  • O’Connell KP, Goodman RM, Handelsman J (1996) Engineering the rhizosphere: expressing a bias. Trends Biotechnol 14:83–88

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    PubMed  CAS  Google Scholar 

  • Paul ND, Hatcher PE, Taylor JE (2000) Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci 5:220–225

    PubMed  CAS  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    PubMed  CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol 47:368–372

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Loon LC (1999) Salicylic acid-independent plant defence pathways. Trends Plant Sci 4:52–58

    PubMed  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt, JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Métraux JP, Van Loon LC (2000) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Pathol 57:123–134

    CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MPM, Van der Sluis I, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of fusarium wilt of radish by Pseudomonas spp. Phytopathology 85:1075–1081

    Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    PubMed  CAS  Google Scholar 

  • Robison MM (2001) Dual role for ethylene in susceptibility of tomato to Verticillium wilt. J Phytopathol 149:385–388

    CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    PubMed  CAS  Google Scholar 

  • Ryan CA (1992) The search for the proteinase-inhibitor inducing factor, PIIF. Plant Mol Biol 19:123–133

    PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    PubMed  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere micro-organisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Google Scholar 

  • Shah S, Li J, Moffatt BM, Glick BR (1997) ACC deaminase genes from plant growth promoting bacteria. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria: present status and future prospects. OECD, Paris, pp 320–324

    Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth promoting rhizobacteria. Can J Microbiol 44:833–843

    PubMed  CAS  Google Scholar 

  • Sheehy RE, Honma M, Yamada M, Sasaki T, Martineau B, Hiatt WR (1991) Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. J Bacteriol 173:5260–5265

    PubMed  CAS  Google Scholar 

  • Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577–582

    CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, van Pelt JA, Mueller MJ, Buchala AJ, Métraux JP, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Penninckx IAMA, Broekaert WF, Cammue BPA (2001a) The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 13:63–68

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Tierens KFM, Penninckx IAMA, Mauch-Mani B, Broekaert WF, Cammue BPA (2001b) Different micro-organisms differentially induce Arabidopsis disease response pathways. Plant Physiol Biochem 39:673–680

    CAS  Google Scholar 

  • Thulke OU, Conrath U (1998) Salicylic acid has a dual role in the activation of defence-related genes in parsley. Plant J 14:35–43

    PubMed  CAS  Google Scholar 

  • Ton J, Pieterse CMJ, Van Loon LC (1999) Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Mol Plant-Microbe Interact 12:911–918

    PubMed  CAS  Google Scholar 

  • Ton J, Davison S, Van Wees SCM, Van Loon LC, Pieterse CMJ (2001) The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol 125:652–661

    PubMed  CAS  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon, LC, Pieterse CMJ (2002a) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant-Microbe Interact 15:27–34

    PubMed  CAS  Google Scholar 

  • Ton J, De Vos M, Robben C, Buchala AJ, Métraux JP, Van Loon LC, Pieterse CMJ (2002b) Characterisation of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J 29:11–21

    PubMed  CAS  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ (2002c) The Arabidopsis ISR1 locus is required for rhizobacteria-mediated induced systemic resistance against different pathogens. Plant Biol 4:224–227

    CAS  Google Scholar 

  • Troxler J, Berling CH, Moënne-Loccoz Y, Keel C, Défago G (1997) Interactions between the biocontrol agent Pseudomonas fluorescens CHA0 and Thielaviopsis basicola in tobacco roots observed by immunofluorescence microscopy. Plant Pathol 46:62–71

    Google Scholar 

  • Tuzun S, Kloepper J (1995) Practical application and implementation of induced resistance. In: Hammerschmidt R, Kuc J (eds) Induced resistance to disease in plants. Kluwer, Dordrecht, pp 152–168

    Google Scholar 

  • Van Loon LC (1984) Regulation of pathogenesis and symptom expression in diseased plants by ethylene. In: Fuchs Y, Chalutz E (eds) Ethylene: biochemical, physiological and applied aspects. Martinus Nijhoff/Dr W Junk, The Hague, pp 171–180

    Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Google Scholar 

  • Van Loon LC (2000) Systemic induced resistance. In: Slusarenko AJ, Fraser RSS, Van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer, Dordrecht, pp 521–574

    Google Scholar 

  • Van Loon LC, Pieterse CMJ (2002) Biocontrol agents in signaling resistance. In: Gnanamanickam SS (ed) Biological control of crop diseases. Marcel Dekker, New York, pp 355–386

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    PubMed  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth J Plant Pathol 98:129–139

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van’t Westende Y, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724

    PubMed  Google Scholar 

  • Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CMJ (1999) Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol Biol 41:537–549

    PubMed  Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jas-monate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    PubMed  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Influence of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes transferred into Pseudomonas fluoresceins strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907

    PubMed  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Google Scholar 

  • Whipps JM (1990) Carbon utilization. In: Lynch JM (ed) The rhizosphere. Wiley Interscience, Chichester, UK, pp 59–97

    Google Scholar 

  • Woltering EJ, Van Doom WG (1988) Role of ethylene in senescence of petals — morphological and taxonomical relationships. J Exp Bot 39:1605–1616

    CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    CAS  Google Scholar 

  • Zehnder GW, Murphy JF, Sikora EJ, Kloepper JW (2001) Application of rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Loon, L.C., Glick, B.R. (2004). Increased Plant Fitness by Rhizobacteria. In: Sandermann, H. (eds) Molecular Ecotoxicology of Plants. Ecological Studies, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08818-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08818-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05670-3

  • Online ISBN: 978-3-662-08818-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics