Skip to main content

cis Elements and Transcription Factors Regulating Gene Promoters in Response to Environmental Stress

  • Chapter
Molecular Ecotoxicology of Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 170))

Abstract

Plants alter their patterns of gene expression in response to environmental stress, and a reprogramming of plant metabolism upon abiotic/biotic stimuli involves changes in plant gene expression. In other words, the expression of many genes involved in primary and secondary metabolism is induced by various ecotoxicological stressors. Similarly, pathogenesis-related genes are induced by a variety of stressors. These changes are the result of a modification in the rate of transcription for specific genes. An eukaroytic gene is divided into several sections. There is a transcribed region, existing of the coding sequence, a 3′ and 5′ untranslated region of mRNA, a promoter region and an upstream regulatory region (Ferl and Paul 2000). The promoter of a single gene can be activated by different external stimuli, but promoters of different genes can also be activated by the same stimuli. Thus, the organization of different promoter sections and the architecture of promoters contribute to the complex gene regulation upon external stressors. The promoter contains several elements important for the transcription of the protein coding DNA sequence. These regulatory elements are called cis elements. In general these elements are between 4–20 bp long. Not only their sequence is important for controlling transcription, but also their position relative to the transcription start and relative to other cis elements. The basic cis elements of eukaryotic genes are the TATA and CAAT or CCAAT boxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    PubMed  CAS  Google Scholar 

  • Aharoni A, Vorst O (2001) DNA microarrays for functional plant genomics. Plant Mol Biol 48:99–118

    Google Scholar 

  • Almoguera C, Prieto-Dapena P, Jordano J (1998) Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements. Plant J 13:437–446

    PubMed  CAS  Google Scholar 

  • Akkapeddi AS, Noormets A, Deo BK, Karnosky DF, Podila GK (1999) Gene structure and expression of the aspen cytosolic copper/zinc-superoxide dismutase (PtSodCcl). Plant Sci 143:151–162

    CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2001) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Baker SS, Wilhelm KS, Tomashow MF (1994) The 5′-region of Arabidopsis thaliana cor151 has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    PubMed  CAS  Google Scholar 

  • Batz O, Logemann E, Reinold S, Hahlbrock K (1998) Extensive reprogramming of primary and secondary metabolism by fungal elicitor or infection in parsley cells. Biol Chem 379:1127–1135

    PubMed  CAS  Google Scholar 

  • Baxevanis AD (2001) The molecular biology database collection: an updated compilation of biological database resources. Nucleic Acids Res 29:1–10

    PubMed  CAS  Google Scholar 

  • Bharti K, Schmidt E, Lyck R, Heerklotz D, Bublak D, Scharf K-D (2000) Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum. Plant J 22:355–366

    PubMed  CAS  Google Scholar 

  • Bouchez D, Tokuhisa JG, Llewellyn DJ, Dennis ES, Ellis JG (1989) The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J 8:4197–4204

    PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stress. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Brosché M, Fant C, Bergkvist SW, Strid H, Svensk A, Olsson O, Strid Å (1999) Molecular markers for UV-B stress in plants: alteration of the expression of four classes of genes in Visum sativum and the formation of high molecular mass RNA adducts. Biochim Biophys Acta 1447:185–198

    PubMed  Google Scholar 

  • Brown APC, Dunn MA, Goddard NJ, Hughes MA (2001) Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L) gene bltl101.1. Planta 213:770–780

    PubMed  CAS  Google Scholar 

  • Bruce W, Folkerts O, Garnaat C, Crasta O, Roth B, Bowen B (2000) Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P. Plant Cell 12:65–79

    PubMed  CAS  Google Scholar 

  • Busk PK, Pagès M (1998) Regulation of abscisic acid-induced transcription. Plant Mol Biol 37:425–435

    PubMed  CAS  Google Scholar 

  • Chen C, Chen Z (2000) Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol Biol 42:387–396

    PubMed  CAS  Google Scholar 

  • Chen W, Singh KB (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19:667–677

    PubMed  CAS  Google Scholar 

  • Chen W, Chao G, Singh KB (1996) The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase contains closely linked OBF- and OBP1 -binding sites. Plant J 10:955–966

    PubMed  CAS  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    PubMed  CAS  Google Scholar 

  • Chiron H, Drouet A, Lieutier F, Payer H-D, Ernst D, Sandermann H (2000) Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiol 124:865–872

    PubMed  CAS  Google Scholar 

  • Cho JS, Chang MS, Rho HM (2001) Transcriptional activatuion of the human Cu/Zn superoxide dismutase gene by 2,3,7,8-tetrachlordibenzo-p-dioxin through the xenobiotic-responsive element. Mol Gen Genomics 266:133–141

    CAS  Google Scholar 

  • Choi H-I, Hong J-H, Ha J-O, Kang J-J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    PubMed  CAS  Google Scholar 

  • Curtis MD, Rae, AL, Rusu AG, Harrison SJ, Manners JM (1997) A peroxidase gene promoter induced by phytopathogens and methyl jasmonate in transgenic plants. Mol Plant Microbe Interact 10:326–338

    PubMed  CAS  Google Scholar 

  • Czarnecka-Verner E, Yuan C-X, Scharf K-D, English G, Gurley WB (2000) Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Mol Biol 43:459–471

    PubMed  CAS  Google Scholar 

  • D’Agostino IB, Deruere J, Kieber JJ (2000) Characterization of the response of the Arabidopsis response regulator gene family to cytokinin. Plant Physiol 124:1706–1717

    PubMed  Google Scholar 

  • Day TA (1993) Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants. Oecologia 95:542–550

    Google Scholar 

  • Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171–178

    Google Scholar 

  • Dunn MA, White AJ, Vural S, Hughes MA (1998) Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.). Plant Mol Biol 38:551–564

    PubMed  CAS  Google Scholar 

  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274

    Google Scholar 

  • Ernst D, Grimmig B, Heidenreich B, Schubert R, Sandermann H (1999) Ozone-induced genes: mechanisms and biotechnological applications. In: Smallwood MF, Calvert CM, Bowles DJ (eds) Plant responses to environmental stress. BIOS Scientific Publishers, Oxford, pp 33–41

    Google Scholar 

  • Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699

    PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    PubMed  CAS  Google Scholar 

  • Ferl R, Paul A-L (2000) Genome organization and expression. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 312–357

    Google Scholar 

  • Foster R, Izawa T, Chua N-H (1994) Plant bZIP proteins gather at ACGT elements. FASEB J 8:192–200

    PubMed  CAS  Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    PubMed  CAS  Google Scholar 

  • Giedroc DP, Chen X, Apuy JL (2001) Metal response element (MRE)-binding transcription factor-1 (MTF-1): structure, function, and regulation. Antioxid Redox Signal 3:577–596

    PubMed  CAS  Google Scholar 

  • Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR (1988) An evo-lutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 85:7089–7093

    PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Albrecht H, Stratford R (1993) Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3:563–571

    PubMed  CAS  Google Scholar 

  • Green PJ, Yong M-H, Cuozzo M, Kano-Murakimi Y, Silverstein P, Chua N-H (1988) Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO J 7:4035–4044

    PubMed  CAS  Google Scholar 

  • Grimmig B, Schubert R, Fischer R, Hain R, Schreier PH, Betz C, Langebartels C, Ernst D, Sandermann H (1997) Ozone- and ethylene-induced regulation of a grapevine resveratrol synthase promoter in transgenic tobacco. Acta Physiol Plant 19:467–474

    CAS  Google Scholar 

  • Grimmig B, Gonzalez-Perez MN, Welzl G, Penuelas J, Schubert R, Hain R, Heidenreich B, Betz C, Langebartels C, Ernst D, Sandermann H (2002) Ethylen- and ozone-induced regulation of a grapevine resveratrol synthase gene: different responsive promoter regions. Plant Physiol Biochem 40:865–870

    CAS  Google Scholar 

  • Grimmig B, Gonzalez-Perez MN, Leubner-Metzger G, Vögeli-Lange R, Meins F, Hain Penuelas J, Heidenreich B, Langebartels C, Ernst D, Sandermann H (2003) Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling. Plant Mol Biol 51:599–607

    PubMed  CAS  Google Scholar 

  • Guiltinan MJ, Marcotte WR, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250:267–271

    PubMed  CAS  Google Scholar 

  • Hara K, Yagi M, Kusano T, Sano H (2000) Rapid systemic accumulation of transcripts encoding tobacco WRKY transcription factor upon wounding. Mol Gen Genet 263:30–37

    PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113

    PubMed  CAS  Google Scholar 

  • Hartmann U, Valentine WJ, Christie JM, Hays J, Jenkins GI, Weisshaar B (1998) Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol 36:741–754

    PubMed  CAS  Google Scholar 

  • Hattori T, Totsuku M, Hobo T, Kagaya Y, Yamamoto-Toyoda A (2002) Experimentally determined sequence requirements of ACGT-containing abscisic acid response element. Plant Cell Physiol 43:136–140

    PubMed  CAS  Google Scholar 

  • He Y, Gan S (2001) Identical promoter elements are involved in regulation of the OPR1 gene by senescence and jasmonic acid in Arabidopsis. Plant Mol Biol 47:595–605

    PubMed  CAS  Google Scholar 

  • Hehl R, Wingender E (2001) Database-assisted promoter analysis. Trends Plant Sci 6:251–255

    PubMed  CAS  Google Scholar 

  • Heidenreich B, Mayer K, Sandermann H, Ernst D (2001) Mercury-induced genes in Arabidopsis thaliana: identification of induced genes upon long-term mercuric ion exposure. Plant Cell Environ 24:1227–1234

    CAS  Google Scholar 

  • Hemm MR, Herrmann KM, Chappie C (2001) AtMYB4: a transcription factor general in the battle against UV. Trends Plant Sci 4:135–136

    Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    PubMed  CAS  Google Scholar 

  • Hughes MA (1996) Plant molecular genetics. Longman, Essex

    Google Scholar 

  • Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31:370–377

    PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Google Scholar 

  • Jensen LJ, Knudsen S (2000) Automatic discovery of regulatory patterns in promoter regions based on whole cell expression data and functional annotation. Bioinformatics 16:326–333

    PubMed  CAS  Google Scholar 

  • Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C (2000) Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. EMBO J 19:6150–6161

    PubMed  CAS  Google Scholar 

  • Johnson C, Glover G, Arias J (2001) Regulation of DNA binding and trans-activation by a xenobiotic stress-activated plant transcription factor. J Biol Chem 276:172–178

    PubMed  CAS  Google Scholar 

  • Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. In: Callow JA (ed) Advances in botanical research, vol 22. Academic Press, San Diego, pp 97–162

    Google Scholar 

  • Jouanneau J-P, Lapous D, Guern J (1991) In plant protoplasts, the spontaneous expression of defense reactions and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol 96:459–466

    PubMed  CAS  Google Scholar 

  • Kernodle SP, Scandalios JG (2001) Structural organization, regulation, and expression of the chloroplastic superoxide dismutase Sod1 gene in maize. Arch Biochem Biophys 391:137–147

    PubMed  CAS  Google Scholar 

  • Kim SR, Choi JL, Costa MA, An G (1992) Identification of G-box sequence as an essential element for methyl jasmonate response of potato proteinase inhibitor II promoter. Plant Physiol 99:627–631

    PubMed  CAS  Google Scholar 

  • Kirsch C, Takayma-Wik M, Schmelzer E, Hahlbrock K, Somssich IE (2000) A novel regulatory element invovlded in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection. Mol Plant Pathol 1:243–251

    PubMed  CAS  Google Scholar 

  • Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K (2001) A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J 26:217–227

    PubMed  CAS  Google Scholar 

  • Klinedinst S, Pascuzzi P, Redman J, Desai M, Aria J (2000) A xenobiotic-stress-activated transcription factor and its cognate target genes are preferentially expressed in root tip meristems. Plant Mol Biol 42:679–688

    PubMed  CAS  Google Scholar 

  • Koch MA, Weisshaar B, Kroymann J, Haubold B, Mitchell-Olds T (2001) Comparartive genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Mol Biol Evol 18:1882–1891

    PubMed  CAS  Google Scholar 

  • Langebartels C, Schraudner M, Heller W, Ernst D, Sandermann H (2002) Oxidative stress and defense reactions in plants exposed to air pollutants and UV-B radiation. In: Inzé D, Van Montagu M (eds) Oxidative stress in plants. Taylor and Francis, London, pp 105–135

    Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    PubMed  CAS  Google Scholar 

  • Leubner-Metzger G, Meins F (1999) Functions and regulation of plant β-1,3-glucanases (PR-2). In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC Press, Boca Raton, pp 49–76

    Google Scholar 

  • Leubner-Metzger G, Petruzelli L, Waldvogel R,Vögeli-Lange R, Meins F (1998) Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I β-1,3-glucanase during tobacco seed germination. Plant Mol Biol 38:785–795.

    PubMed  CAS  Google Scholar 

  • Liechti R, Farmer EE (2002) The jasmonate pathway. Science 296:1649–1650

    PubMed  CAS  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    PubMed  CAS  Google Scholar 

  • Logemann E, Hahlbrock K (2002) Crosstalk among stress responses in plants: pathogen defense overrides UV protection through an inversely regulated ACE/ACE type of light-responsive gene promoter unit. Proc Natl Acad Sci USA 99:2428–2432

    PubMed  CAS  Google Scholar 

  • Lyons TJ, Gasch AP, Gaither LA, Botstein D, Brown PO, Eide DJ (2000) Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc Natl Acad Sci USA 97:7957–7962

    PubMed  CAS  Google Scholar 

  • Madhava Rao KV, Sresty TV (2000) Antioxidative parameters in the seedlings of pigeon-pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–118

    PubMed  CAS  Google Scholar 

  • Maleck K, Dietrich RA (1999) Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci 4:215–219

    PubMed  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    PubMed  CAS  Google Scholar 

  • Manners JM, Penninckx IAMA, Vermaere K, Kazan K, Brown RL, Morgan A, Maclean DJ, Curtis MD, Cammue BPA, Broekaert WF (1998) The promoter of the plant defensin gene PDF 1.2 from Arabidopsis is sytemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Mol Biol 38:1071–1080

    PubMed  CAS  Google Scholar 

  • Memelink J, Verpoorte R, Kijne JW (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci 6:212–219

    PubMed  CAS  Google Scholar 

  • Menke FLH, Champion A, Kijne J, Memelink J (1999) A novel jasmonate- and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate- and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18:4455–4463

    PubMed  CAS  Google Scholar 

  • Menkens AE, Schindler U, Cashmore AR (1995) The G box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 20:506–510

    PubMed  CAS  Google Scholar 

  • Miller JD, Arteca RN, Pell EJ (1999) Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol 120:1015–1023

    PubMed  CAS  Google Scholar 

  • Mundy J, Yamaguchi-Shinozaki K, Chua N-H (1990) Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87:1406–1410

    PubMed  CAS  Google Scholar 

  • Nover L (1987) Expression of heat stress genes in homologous and heterologous systems. Enzyme Microb Technol 9:130–144

    CAS  Google Scholar 

  • Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Suzuki K, Shinshi H (2000) Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol 41:1187–1192

    PubMed  CAS  Google Scholar 

  • Ono A, Izawa T, Chua N-H, Shimamoto K (1996) The rab16B promoter of rice contains two distinct abscisic acid-responsive elements. Plant Physiol 112:483–491

    PubMed  CAS  Google Scholar 

  • Ouwerkerk PBF, Trimborn TO, Hilliou F, Memelink J (1999) Nuclear factors GT-1 and 3AF1 interact with multiple sequences within the promoter of the Tdc gene from Madagascar periwinkle: GT-1 is involved in UV light-induced expression. Mol Gen Genet 261:610–622

    PubMed  CAS  Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264–273

    CAS  Google Scholar 

  • Périer RC, Praz V, Junier T, Bonnard C, Bucher P (2000) The eukaryotic promoter database (EPD.) Nucleic Acids Res 28:302–303

    PubMed  Google Scholar 

  • Petit J-M, van Wuytswinkel O, Briat J-F, Lobréaux S (2001) Characterization of an iron-dependent regulatory sequence involved in the transcriptional control of AtFer1 and ZmFer1 plant ferritin genes by iron. J Biol Chem 276:5584–5590

    PubMed  CAS  Google Scholar 

  • Pontier D, Balagué C, Bezombes-Marion I, Tronchet M, Deslandes L, Roby D (2001) Identification of a novel pathogen-responsive element in the promoter of the tobacco gene HSR203 J, a molecular marker of the hypersensitive response. Plant J 26:495–507

    PubMed  CAS  Google Scholar 

  • Quandt K, Frech K, Karas H, Wingender E, Werner T (1995) Mat Ind and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23:4878–4884

    PubMed  CAS  Google Scholar 

  • Reindl A, Schöffl F (1998) Interaction between the Arabidopsis thaliana heat shock transcription factor HSF1 and the TATA binding protein TBP. FEBS Lett 436:318–322

    PubMed  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    PubMed  CAS  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Jiang C-Z, Keddie J, Adam L, Pineda O, Rat-cliffe OJ, Samah RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G-L (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtVRKY6, is associated with both senescence- and defence-related processes. Plant J 28:123–133

    PubMed  CAS  Google Scholar 

  • Rombauts S, Déhais P, Van Montagu M, Rouzé P (1999) Plant CARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27:295–296

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315

    PubMed  CAS  Google Scholar 

  • Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signalling. Plant Cell 14:749–762

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Tanaka A, Watanabe H, Tango S (1998) Molecular cloning of Arabidopsis photolyase gene (PHR1) and characterization of its promoter region. DNA Sequence 9:335–340

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

    Google Scholar 

  • Sato F, Kitajima S, Koyama T, Yamada Y (1996) Ethylene-induced gene expression of osmotin-like protein, a neutral isoform of tobacco PR-5, is mediated by the AGC-CGCC cis-sequence. Plant Cell Physiol 37:249–255

    PubMed  CAS  Google Scholar 

  • Scharf K-D, Heider H, Höhfeld I, Lyck R, Schmidt E, Nover L (1998) The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18:2240–2251

    PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    PubMed  CAS  Google Scholar 

  • Schöffl F, Raschke E, Nagao RT (1984) The DNA sequence analysis of soybean heat-shock factors and identification of possible regulatory promoter elements. EMBO J 3:2491–2497

    PubMed  Google Scholar 

  • Schnitzler J-P, Jungblut TM, Heller W, Köfferlein M, Hutzier P, Heinzmann U, Schmelzer E, Ernst D, Langebartels C, Sandermann H (1996) Tissue localization of u.v.-B-screen-ing pigments and of chalcone synthase mRNA in needles of Scots pine seedlings. New Phytol 132:247–258

    CAS  Google Scholar 

  • Schubert R, Fischer R, Hain R, Schreier PH, Bahnweg G, Ernst D, Sandermann H (1997) An ozone-responsive region of the grapevine resveratrol synthase promoter differs from the basal pathogen-responsive sequence. Plant Mol Biol 34:417–426

    PubMed  CAS  Google Scholar 

  • Schützendübel A, Polie A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Goldbold DL, Polie A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    PubMed  Google Scholar 

  • Schulze-Lefert P, Dangl JL, Becker-André M, Hahlbrock K, Schulz W (1989) Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 8:651–656

    PubMed  CAS  Google Scholar 

  • Seki H, Ichinose Y, Kato H, Shiraishi T, Yamada T (1996) Analysis of cis-regulatory elements involved in the activation of a member of chalcone synthase gene family (PsChs1) in pea. Plant Mol Biol 31:479–491

    PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    PubMed  CAS  Google Scholar 

  • Sheen J (2002) Phosphorelay and transcription control in cytokinin signal transduction. Science 296:1650–1652

    PubMed  CAS  Google Scholar 

  • Shen Q, Ho T-HD (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G box and a novel ds-acting element. Plant Cell 7:295–307

    PubMed  CAS  Google Scholar 

  • Shen Q, Zhang P, Ho T-HD (1996) Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8:1107–1119

    PubMed  CAS  Google Scholar 

  • Shimizu T, Akada S, Senda M, Ishikawa R, Harada T, Niizeki M, Dube SK (1999) Enhanced expression and differential inducibility of soybean chalcone synthase genes by supplemental UV-B in dark-grown seedlings. Plant Mol Biol 39:785–795

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    PubMed  CAS  Google Scholar 

  • Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ 24:1177–1188

    CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    PubMed  CAS  Google Scholar 

  • Tiwari SB, Wang X-J, Hagen G, Guilfoyle TJ (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    PubMed  CAS  Google Scholar 

  • Ulmasov T, Ohimiya A, Hagen G, Guilfoyle T (1995) The soybean GH2/4 gene that encodes a glutathione S-transferase has a promoter that is activated by a wide range of chemical agents. Plant Physiol 108:919–927

    PubMed  CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    PubMed  CAS  Google Scholar 

  • Vernooij B, Uknes S, Ward E, Ryals J (1994) Salicylic acid as a signal molecule in plant-pathogen interactions. Curr Opin Cell Biol 6:275–279

    PubMed  CAS  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    PubMed  CAS  Google Scholar 

  • Werner T (2002) Finding and decrypting of promoters contributes to the elucidation of gene function. Electronic Publication, In Silico Biol. 2:0023 http://www.bioinfo.de/ isb/2002/02/0023/main.html

    Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Mundy J, Chua N-H (1989) Four tightly linked rab genes are differentially expressed in rice. Plant Mol Biol 14:29–39

    Google Scholar 

  • Yamamoto S, Suzuki K, Shinshi H (1999) Elicitor-responsive, ethylene-independent activation of GCC box-mediated transcription that is regulated by both protein phosphorylation and dephosphorylation in cultured tobacco cells. Plant J 20:571–579

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminium toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol 128:63–72

    PubMed  CAS  Google Scholar 

  • Yang P, Chen C, Wang Z, Fan B, Chen Z (1999) A pathogen- and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J 18:141–149

    CAS  Google Scholar 

  • Yang Q, Grimmig B, Matern U (1998) Anthranilate N-hydroxycinnamoyl/ benzoyltransferase gene from carnation: rapid elicitation of transcription and promoter analysis. Plant Mol Biol 38:1201–1214

    PubMed  CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    PubMed  CAS  Google Scholar 

  • Zhang B, Singh KB (1994) Ocs element promoter sequences are activated by auxin and salicylic acid in Arabidopsis. Proc Natl Acad Sci USA 91:2507–2511

    PubMed  CAS  Google Scholar 

  • Zhang B, Chen W, Foley RC, Büttner M, Singh K (1995) Interactions between distinct types of DNA binding proteins enhance binding to ocs element promoter sequences. Plant Cell 7:2241–2252

    PubMed  CAS  Google Scholar 

  • Zhang B, Egli D, Georgiev O, Schaffner W (2001a) The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol 21:4505–4514

    PubMed  CAS  Google Scholar 

  • Zhang Y, Chai T-Y, Dong J, Zhao W, An C-C, Chen Z-L, Burkhard G (2001b) Cloning and expression analysis of the heavy-metal responsive gene PvSR2 from bean. Plant Sci 161:783–790

    CAS  Google Scholar 

  • Zhou D-X (1999) Regulatory mechanism of plant gene transcription by GT elements and GT factors. Trends Plant Sci 4:210–214

    PubMed  Google Scholar 

  • Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ernst, D., Aarts, M. (2004). cis Elements and Transcription Factors Regulating Gene Promoters in Response to Environmental Stress. In: Sandermann, H. (eds) Molecular Ecotoxicology of Plants. Ecological Studies, vol 170. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08818-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08818-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05670-3

  • Online ISBN: 978-3-662-08818-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics