Very Large Eddy Simulation for the Prediction of Unsteady Vortex Motion

Chapter

Abstract

A new turbulence model for Very Large Eddy Simulation, based on the extended k-ε model of Chen and Kim is developed and presented in this paper. Introducing an adaptive filtering technique, the model can distinguish between numerically resolved and unresolved parts of flow. It is applied to the simulation of unstable vortex motion in a pipe trifurcation. This flow phenomenon cannot be predicted with classical RANS methods and commonly used turbulence models. Using the VLES method with the new turbulence model, the phenomenon is well predicted and the results agree reasonably well with measurement data.

Keywords

Vortex Anisotropy Cavitation Advection Paral 

Nomenclature

f

filter function

hmax

local grid size

k

turbulent kinetic energy

L

Kolmogorov lengt scale

Pk

production term

U

local velocity

α

model constant

Δ

resolved length scale

Δt

time step

ε

dissipation rate

v

kinematic visscosity

vt

turbulent viscosity

References

  1. [1]
    Chen YS, Kim SW (1987) Computation of turbulent flows using an extended k-c turbulence closure model, NASA CR-179204Google Scholar
  2. [2]
    Constantinescu GS, Squires KD (2000) LES and DES Investigations of Turbulent flow over a Sphere, AIAA-2000–0540Google Scholar
  3. [3]
    De Langhe C, Dick E (2002) Very-Large-Eddy Simulation of Turbulent Flows, http://allserv.rug.ac.be/—edick/Google Scholar
  4. [4]
    Hoffmann H, Roswora RR, Egger A (2000) Rectification of Marsyangdi Trifurcation, In: Hydro Vision 2000 Conference Technical Papers, HCI Publications, Inc., CharlotteGoogle Scholar
  5. [5]
    Magnato F, Gabi M (2000) A new adaptive turbulence model for unsteady flow fields in rotating machinery, In: Proceedings of the 8th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 8)Google Scholar
  6. [6]
    Maihöfer M (2002) Effiziente Verfahren zur Berechnung dreidimensionaler Strömungen mit nichtpassenden Gittern, Ph.D. thesis, University of StuttgartGoogle Scholar
  7. [7]
    Maihöfer M, Ruprecht A (2003) A Local Grid Refinement Algorithm on Modern High-Performance Computers, In: Proceedings of Parallel CFD 2003, Elsavier, AmsterdamGoogle Scholar
  8. [8]
    Pope SB (2000) Turbulent flows, Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  9. [9]
    Ruprecht A (1989) Finite Elemente zur Berechnung dreidimensionaler turbulenter Strömungen in komplexen Geometrien, Ph.D. thesis, University of StuttgartGoogle Scholar
  10. [10]
    Ruprecht A (2003) Numerische Strömungssimulation am Beispiel hydraulischer Strömungsmaschinen, Habilitation thesis, University of StuttgartGoogle Scholar
  11. [11]
    Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the Feasibility of LES for Wings, and on Hybrid RANS/LES Approach, In: Liu C, Liu Z (eds) Advances in DNS/LES, Greyden Press, ColumbusGoogle Scholar
  12. [12]
    Van der Vorst HA (1994) Recent Developments in Hybrid CG Methods, In: Gentzsch W, Harms U (eds) High-Performance Computing and Networking, vol. 2: Networking and Tools, Lecture Notes in Computer Science, 797, Springer, Berlin, Heidelberg, New York, pp 174–183Google Scholar
  13. [13]
    Willems W, Peters N (1997) Large Eddy Simulation of a Turbulent Mixing Layer Using a New Two-Level-Turbulence Model, In: Proceedings of the 11th Symposium on Turbulent Shear Flows, GrenobleGoogle Scholar
  14. [14]
    Zienkiewicz OC, Vilotte JP, Toyoshima S, Nakazawa S (1985) Iterative method for constrained and mixed finite approximation. An inexpensive improvement of FEM performance Comput Methods Appl Mech Eng 51: 3–29MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Albert Ruprecht
    • 1
    • 2
  • Thomas Helmrich
    • 1
  • Ivana Buntic
    • 1
  1. 1.Institute of Fluid Mechanics and Hydraulic MachineryUniversity of StuttgartGermany
  2. 2.StuttgartGermany

Personalised recommendations