Skip to main content

Application of CFD-Techniques in Fluid Machinery

  • Chapter
Modelling Fluid Flow
  • 680 Accesses

Abstract

The CFD-techniques being applied for the simulation of the operating behaviour and performance prediction as well as the design optimisation of fluid machinery are described and briefly discussed. Then, the developed CFD-codes are applied to predict the performances of axial and diagonal fans as well as of a centrifugal pump for which also the head drop due to cavitation has been simulated. Furthermore, the predicted performance curves are compared with measurements. Finally, the capability of the real-time design system is demonstrated with respect to the optimum design of the inlet and outlet blade angels as well as to the blade length of a centrifugal pump impeller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

b:

blade height

g:

acceleration due to gravity

i = βs1−β1:

incidence angle

k:

turbulent kinetic energy

m, n:

meridional coordinates

nq:

specific speed

p:

pressure

r, φ, z:

[m], [rad] cylindrical coordinates

rref:

reference radius

s:

developed arc length

sk:

tip clearance

t:

time

u:

circumferential velocity

D:

impeller diameter

H:

total head

NPSH:

Net Positive Suction Head

NPSHi:

incipient NPSH-value

NPSH3%:

NPSH-value for 3% head drop

Q:

flow rate

R:

radius of bubbles

T:

Temperature

V:

total cell volume

α:

vapour void fraction

β:

relative flow angle

βs:

blade angle

ε:

turbulent dissipation rate

Δφw:

wrapping angle

V:

hub to tip ratio, viscosity

ρ:

density

ω:

angular velocity

1,2:

Blade inlet, outlet

l :

liquid

t :

turbulent

th :

theoretical

va :

vapour

\({c_p} = \frac{{2(p - {p_{va}})}}{{\rho u_2^2}}\) :

pressure coefficient

\(\varphi = \frac{{8Q}}{{\pi {D^3}\omega }}\) :

flow coefficient

\({\varphi _v} = \frac{\varphi }{{1 - {v^2}}}\) :

axial flow coefficient

\({\varphi _r} = \frac{\varphi }{{(4\frac{{{b_2}}}{D})}}\) :

radial flow coefficient

\({\Psi _t} = \frac{{8gH}}{{{\omega ^2}{D^2}}}\) :

total flow coefficient

\(\lambda = \varphi \cdot {\Psi _t}\) :

power density

\({\eta _h} = \frac{H}{{{H_{th}}}}\) :

hydraulic efficiency

3D:

three dimensional

ANN:

Artificial Neural Networks

B-B:

Blade to Blade

DNS:

Direct Numerical Simulation

H-S:

Hub to Shroud

LES:

Large Eddy Simulation

NEL:

National Engineering Laboratory

RANS:

Reynold-averaged Navier-Stokes equations

RTD:

Real Time Design

TFA:

Fachgebiet Turbomaschinen und Antriebstechnik, Darmstadt University of Technology

TUBS:

Technical University of Braunschweig

URANS:

unsteady Reynolds-averaged Navier-Stokes equations

VDMA:

Verband Deutscher Maschinen und Anlagenbau e.V.

References

  1. Fletcher, C.A.J.: „Computational Techniques for Fluid Dynamics Vol. I, Vol. II“, Springer Verlag Berlin Heidelberg, 1988.

    Book  MATH  Google Scholar 

  2. Wu, C.H.: „A general Theory of the 3D Flow in Subsonic and Supersonic Turbomachines of Axial Radial and Mixed Flow Type“. NACA, TN 2604, 1952.

    Google Scholar 

  3. Schilling, R.: „Numerical Calculation of the Q3D Incompressible Inviscid Flow in Turbomachines“. 11`s IAHR Symposium Amsterdam, 1982.

    Google Scholar 

  4. Chorin, A. J.: „A numerical method for solving incompressible viscous flow problems.“ In: Journal of Computational Physics 2, S. 12, 1967.

    Google Scholar 

  5. Riedel, N.: „Rotor-Stator Wechselwirkung in hydraulischen Maschinen.“ Ph.D. thesis, TU München, 1997.

    Google Scholar 

  6. Ritzinger, S.: „Simulation realer Laufradströmungen.“ Ph.D. thesis, TU München,1997.

    Google Scholar 

  7. Ferziger, J.H., Peric, M.: „Computational Methods in Fluid Dynamics.“ Berlin, Heidelberg: Springer Verlag, 1996.

    Book  Google Scholar 

  8. Müller, N.: „Entwicklung eines quasi-3D Navier-Stokes Codes zur Optimierung von Beschaufelungen hydraulischer Strömungsmaschinen.“ Interner Bericht des Lehrstuhls für Fluidmechanik, Abt. Hydr, 2003.

    Google Scholar 

  9. Skoda, R.: „Numerische Simulation abgelöster und transitionaler Strömungen in Turbomaschinen.“ Ph.D. thesis, TU München, 2003.

    Google Scholar 

  10. Maurer, W., Skoda, R., Frobenius, M., Schilling, R.: „Numerical Simulation of the 3D Flow Field Through a Slurry Pump“, 4th International Conference on Multiphase Flow, ICMF-2001, New Orleans, May 2001.

    Google Scholar 

  11. Thermann, H., Müller, M., Niehuis, R., Skoda, R., Schilling, R.: „Numerical Simulation of the flow in an annular compressor cascade with different turbulence and transition models“, ETC 5, Prague, 2003.

    Google Scholar 

  12. Skoda, R. Schilling, R. Thurso, J., Stoffel, B.: “Numerical simulation of unsteady and transitional flows pertaining to turbine cascades”, Proceedings of the 5th Symposium on Engineering Turbulence Modelling and Experiments, Mallorca, 2002.

    Google Scholar 

  13. Steinbrecher, Ch., Skoda, R., Schilling, R., Müller, N., Breitenbach, A., Mendler N.: „Numerical Simulation of a self-stabilizing rotor of a centrifugal pump“, Proceedings of FEDSM’03, 4`h ASME/JSME Joint Fluids Engineering Conference, Honolulu, Hawaii, USA, July 6–11, 2003.

    Google Scholar 

  14. Temmerman, L.; Leschziner, M.A.: “Large Eddy Simulation of separated flow in a streamwise periodic channel construction”, Int. Symp. on Turbulence and Shear Flow Phenomena, Stockholm, June 27–29, 2001.

    Google Scholar 

  15. Mahesh, K.; Constantinescu, G.; Apte, S.; Iaccarino, G.; Moin, P.: “Large-Eddy Simulation of gas turbine combustors”, CTR Annular Research Briefs, Stanford University, 2001.

    Google Scholar 

  16. Spalart, P.R.: “Strategies for turbulence modelling and simulations”, Proceedings of the 4`h Symposium on Engineering Turbulence Modelling and Experiments, Corsica, 1999.

    Google Scholar 

  17. Durbin, P.A.: “On the k-e-stagnation point anomaly”, Int. Journal of Heat and Fluid Flow 17, 1996.

    Google Scholar 

  18. Pettersson Reif, B.A.; Durbin, P.A.; Ooi, A.: “Modeling rotational effects in eddy-viscosity closures”, Int. Journal of Heat and Fluid Flow 20, 1999.

    Google Scholar 

  19. Kato, M.; Launder, B.E.: “The modelling of turbulent flow around stationary and vibrating cylinders”, 9`h Symp. On Turbulent Shear Flows, Kyoto, 1993.

    Google Scholar 

  20. Lien, F.S.; Chen, W.L.; Leschziner, M.A.: “Low-Reynolds number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations”, Proceedings of the 3rd Symposium on Engineering Turbulence Modelling and Experiments, Kreta, 1996.

    Google Scholar 

  21. Craft, T.J.; Launder, B.E.; Suga, K.: “Prediction of turbulent transitional phenomena with a nonlinear eddy-viscosity model”, Int. Journal of Heat and Fluid Flow 18, 1997.

    Google Scholar 

  22. Durbin, P.A.: “Separated flow computations with the k-e-v’2 model”, AIAA Journal 33, 1995.

    Google Scholar 

  23. Sauer, J.: „Instationär kavitierende Strömungen — Ein neues Modell basierend auf Front Capturing (VOF) und Blasendynamik“, Ph.D. thesis, Universität Karlsruhe, 2000.

    Google Scholar 

  24. Brodersen, S.: „Experimentelle Untersuchungen an hochbelasteten Axialventilatoren mit kleinem Nabenverhältnis“, Ph.D. thesis, TU Braunschweig, 1986.

    Google Scholar 

  25. Carey, C., Fraser, S.M., Shamsolahi, S., Mcewen, D.: „Studies of the flow of air in a model mixed-flow pump by laser doppler anemometry, Part 5: Velocity measurements in Mark 2 Pump“, National Engineering Laboratory, East Kilbride, Glasgow (NEL Report 717 ), 1990.

    Google Scholar 

  26. Bader, R.: „Simulation kompressibler und inkompressibler Strömungen in Turbomaschinen“, Ph.D. thesis, TU München, VDI Fortschrittsberichte, Reihe 7, Nr. 396, 2000.

    Google Scholar 

  27. Frobenius, M., Schilling, R, Bachert, R., Stoffel, B.: „Entwicklung und experimentelle Validierung eines Codes zur numerischen Berechnung kavitierender Strömungen in Kreiselpumpen“, Abschlussbericht zum AiF-Forschungsvorhaben 13325, 2003.

    Google Scholar 

  28. Friedrichs, J.: „Auswirkungen instationärer Kavitationsformen auf Förderhöhenabfall und Kennlinineninstabilität von Kreiselpumpen.“, Ph.D. thesis, TU Braunschweig, 2003.

    Google Scholar 

  29. Frobenius, M., Schilling, R., Friedrichs, J.; Kosyna, G.: “Numerical and Experimental Investigations of the Cavitating Flow in a Centrifugal Pump Impeller”, ASME Fluids Engineering Division Summer Meeting, Montreal, 2002.

    Google Scholar 

  30. Lepach, Th., Schilling, R.:,,Weiterentwicklung des Real-time Design Systems zur interaktiven Optimierung von Laufrädern beliebiger Schnellläufigkeit.“ Interner Bericht des Lehrstuhls für Fluidmechanik, Abt. Hydr. Maschinen, TU München, 2003.

    Google Scholar 

  31. Krämer, S.: „Entwurf optimaler Beschaufelungen hydraulischer Strömungsmaschinen mit Hilfe Künstlich Neuronaler Netze.“ Interner Bericht des Lehrstuhls für Fluidmechanik, Abt. Hydr. Maschinen, TU München, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schilling, R. (2004). Application of CFD-Techniques in Fluid Machinery. In: Vad, J., Lajos, T., Schilling, R. (eds) Modelling Fluid Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08797-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08797-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-06034-2

  • Online ISBN: 978-3-662-08797-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics