Skip to main content

Multidimensional Models of Spray Processes

  • Chapter

Part of the book series: Heat and Mass Transfer ((HMT))

Abstract

Spray processes play an important role in many technical systems and industrial applications. Examples are spray cooling, spray painting, crop spraying, humidification and spray combustion in furnaces, gas turbines, rockets, as well as diesel and gasoline engines, to name only a few. Typical drop sizes in sprays vary over several orders of magnitude for different applications. Figure 5.1 gives a qualitative classification of broad spray classes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham J (1997) What is Adequate Resolution in the Numerical Computations of Transient Jets? SAE Paper 970051

    Book  Google Scholar 

  2. Abramzon B, Sirignano WA (1989) Droplet Vaporization Model for Spray Combustion Calculations. Int J Heat Mass Transfer, vol 32, no 9, pp 1605–1618

    Article  Google Scholar 

  3. Aggarwal SK (1987) Modeling of a Dilute Vaporizing Multicomponent Fuel Spray. Int J Heat Mass Transger, vol 30, no 9, pp 1949–1961

    Article  MathSciNet  Google Scholar 

  4. Amsden AA (1993) KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries. LA-12503-MS, Los Alamos National Laboratories

    Google Scholar 

  5. Amsden AA, Ramshaw JD, O’Rourke PJ, Butler TD (1985) KIVA: A Computer Program for Two- and Three-Dimensional Fluid Flows with Chemical Reactions and Fuel Sprays. LA-10245-MS, Los Alamos National Laboratories

    Google Scholar 

  6. Amsden AA, O’Rourke PJ, Butler TD (1989) KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays. LA-11560-MS, Los Alamos National Laboratories

    Google Scholar 

  7. Aquino C, Plensdorf W, Lavoie G, Curtis E (1998) The Occurrence of Flash Boiling in a Port Injected Gasoline Engine. SAE Paper 982522

    Book  Google Scholar 

  8. Arcoumanis C, Gavaises M, French B (1997) Effect of Fuel Injection Process on the Structure of Diesel Sprays. SAE Paper 970799

    Book  Google Scholar 

  9. Arcoumanis C, Flora H, Gavaises M, Badami M (2000) Cavitation in Real-Size Multi-Hole Diesel Injector Nozzles. SAE Paper 2000–01-1249

    Book  Google Scholar 

  10. Ashgriz N (2002) http://www.mie.utoronto.ca/labas/mfl/collision-seminar_files/frame.htm

  11. Ashgriz N, Poo JY (1990) Coalescence and Separation in Binary Collisions of Liquid Drops. J Fluid Mechanics, vol 221, pp 183–204

    Article  Google Scholar 

  12. Ayoub NS, Reitz RD (1995) Multidimensional Computation of Multicomponent Spray Vaporization and Combustion. SAE Paper 950285

    Google Scholar 

  13. Bai C, Gosman AD (1995) Development of Methodology for Spray Impingement Simulation. SAE Paper 950283

    Google Scholar 

  14. Bai CX, Rusche H, Gosman AD (2000) Modeling of Gasoline Spray Impingement. Accepted for publication in Atomization and Sprays

    Google Scholar 

  15. Baumgarten C, Shi Y, Busch R, Merker GP (2001) Numerical and Experimental Investigations of Cavitating Flow in High Pressure Diesel Nozzles, Proc 17th ILASS Europe Conf, pp 593–599, Zurich, Switzerland

    Google Scholar 

  16. Baumgarten C, Stegemann J, Merker GP (2002) A New Model for Cavitation Induced Primary Breakup of Diesel Sprays. Proc 18th ILASS Europe Conf, pp 15–20, Zaragoza, Spain

    Google Scholar 

  17. Bellman R, Pennington RH (1954) Effects of Surface Tension and Viscosity on Taylor Instability. Quarterly of Applied Mathematics, vol 12, pp 151–162

    MathSciNet  MATH  Google Scholar 

  18. v Berg E, Alajbegovic A, Tatschi R, Krüger C, Michels U (2001) Multiphase Modeling of Diesel Sprays with the Eulerian/Eulerian Approach. 17th ILASS Europe Conf, pp 443–448, Zurich, Switzerland

    Google Scholar 

  19. Bracco FV (1985) Modeling of Engine Sprays. SAE Paper 850394

    Book  Google Scholar 

  20. Chan M, Das S, Reitz RD (1997) Modeling Multiple Injection and EGR Effects on Diesel Engine Emissions. SAE Paper 972864

    Book  Google Scholar 

  21. Chiang CH, Raju MS, Sirignano WA (1992) Numerical Analysis of Convecting, Vaporizing Fuel Droplet with Variable Properties. Int J Heat Mass Transfer, vol 35, no 5, pp 1307–1324

    Article  MATH  Google Scholar 

  22. Cousin J, Nuglisch HJ (2001) Modeling of Internal Flow in High Pressure Swirl Injectors. SAE Paper 2001–01-0963

    Google Scholar 

  23. Crowe CT, Sharma MP, Stock DE (1977) The Particle-Source-in Cell Method for Gas Droplet Flow. ASME Journal of Fluids engineering, vol 99, pp 325–332

    Article  Google Scholar 

  24. Crowe CT, Chung JN, Troutt TR (1988) Particle Mixing in Free Shear Flows. Prog Energy Combust Sci, vol 14, pp 171–194

    Article  Google Scholar 

  25. Dognin C, Dupont A, Gastaldi P (2001) 3D Simulation: A Powerful Tool to Understand Mixture Preparation and Combustion in Direct Injection SI Engines. Proc 4th Cong Gasoline Direct Injection Engines, pp 80–109, Cologne, Germany

    Google Scholar 

  26. Dombrowski N, Hooper PC (1962) The Effect of Ambient Density on Drop Formation in Sprays. Chem Eng Sci, vol 17, p 291

    Article  Google Scholar 

  27. Downar-Zapolski P, Bilicki Z, Bolle L, Franco J (1996) The Non-Equilibrium Relaxation Model for One-Dimensional Flashing Liquid Flow. Inj J Multiphase Flow, vol 22, no 3, pp 473–483

    Article  MATH  Google Scholar 

  28. Dukowicz JK (1980) A Particle-Fluid Numerical Model for Liquid Sprays. J Comp Physics, vol 35, pp 229–253

    Article  MathSciNet  MATH  Google Scholar 

  29. Dumont N, Simonin O, Habchi C (2000) Cavitating Flow in Diesel Injectors and Atomization: a Bibliographical Review. 8th Int Conf on Liquid Atomization and Spray Systems (ICLASS), pp 314–322, Pasadena, CA

    Google Scholar 

  30. Dwyer HA, Stapf P, Maly RR (2000) Unsteady Vaporization and Ignition of a Three-Dimensional Droplet Array. Combust Flame, vol 121, no 1–2, pp 181–194

    Article  Google Scholar 

  31. Faeth GM (1983) Evaporation and Combustion of Sprays. Prog Energy Combust Sci, vol 9, pp 1–76

    Article  Google Scholar 

  32. Faeth GM (1987) Mixing, Transport and Combustion in Sprays. Prog Energy Combust Sci, vol 13, pp 293–345

    Article  Google Scholar 

  33. Gavaises M (1997) Modelling of Diesel Fuel Injection Processes. Ph.D. Thesis, Imperial College, University of London

    Google Scholar 

  34. Georjon TL, Reitz RD (1999) A Drop-Shattering Collision Model for Multidimensional Spray Computations. Atomization and Sprays, vol 9, no 3, pp 231–254

    Google Scholar 

  35. Gonzalez MA, Borman GL, Reitz RD (1991) A Study of Diesel Cold Starting Using Both Cycle Analysis and Multidimensional Computations. SAE Paper 910108

    Google Scholar 

  36. Gupta HC, Bracco FV (1978) Numerical Computations of Two-Dimensional Unsteady Sprays for Application to Engines. AIAA Journal, vol 16, no 10, pp 1053–1061

    Article  Google Scholar 

  37. Han Z, Parrish S, Farrell PV, Reitz RD (1997) Modeling Atomization Processes of Pressure-Swirl Hollow-Cone Fuel Sprays. Atomization and Sprays, vol 7, pp 663–684

    Google Scholar 

  38. Hasse C, Peters N (2002) Eulerian Spray Modeling of Diesel Injection in a High-Pressure / High Temperature Chamber. Proc 12th Int Multidim Engine Modeling Users Group Meeting, Detroit, MI

    Google Scholar 

  39. Haywood RJ, Nafziger R, Renksizbulut M (1989) A Detailed Examination of Gas an Liquid Phase Transient Processes in Convective Droplet Evaporation. ASME J. Heat Transfer, vol 111, pp 495–502

    Article  Google Scholar 

  40. Heagerty WW, Shea JF (1955) A Study of the Stability of Plane Fluid Sheets. J Appl Mech, vol 22, p 509

    Google Scholar 

  41. Heywood JB (1988) Internal Combustion Engine Fundamentals. McGraw-Hill, New York, NY

    Google Scholar 

  42. Hohmann, S, Klingsporn M, Renz U (1996) An Improved Model to Describe Spray Evaporation Under Diesel-Like Conditions. SAE Paper 960030

    Book  Google Scholar 

  43. Huh KY, Gosman AD (1991) A Phenomenological Model of Diesel Spray Atomization. Int Conf on Multiphase Flows, pp 515–518, Tsukuba, Japan

    Google Scholar 

  44. Incropera FP, DeWitt DP (1996) Introduction to Heat Transfer. 3rd edn, Wiley, New York

    Google Scholar 

  45. Jin JD, Borman GL (1985) A Model for Multicomponent Droplet Vaporization at High Ambient Pressures. SAE Paper 850264

    Book  Google Scholar 

  46. Knapp RT, Daily JW, Hammitt FG (1970) Cavitation. McGraw-Hill, New York, NY

    Google Scholar 

  47. Krüger C, Otto F, Wirbeleit F, Willand J, Peters N (1999) Incorporation of the Interactive Cross-Sectional Average Methodology for diesel Spray Simulations into a 3D Code. Proc 9th Int Multidim Engine Modeling Users Group Meeting, Detroit, MI

    Google Scholar 

  48. Lippert AM, Reitz RD (1997) Modeling of Multicomponent Fuels Using Continuous Distributions with Application to Droplet Evaporation and Sprays. SAE Paper 972882

    Book  Google Scholar 

  49. Liu AB, Mather D, Reitz RD (1993) Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. SAE Paper 930072

    Book  Google Scholar 

  50. Liu Z, Obokata T, Reitz RD (1997) Modeling Drop Drag Effects on Fuel Spray Impingement in Direct Injection diesel Engines. SAE Paper 970879

    Book  Google Scholar 

  51. Matsumoto S, Saito S (1970) On the Mechanism of Suspension of Particles in Horizontal Conveying: Monte Carlo Simulation Based on the Irregular Bouncing Model. J Chem Eng, vol 3, pp 83–92

    Article  Google Scholar 

  52. Meyer J, Weihs D (1987) Capillary Instability of an Annular Liquid Jet. J Fluid Mech, vol 179, pp 531–545

    Article  MATH  Google Scholar 

  53. Miesse CC (1955) Correlation of Experimental Data on the Disintegration of Liquid Jets. Indust Engn Chem, vol 47, p 1690

    Article  Google Scholar 

  54. Modarress D, Wuerer J, Elghobashi S (1982) An Experimental Study of a Turbulent Round Two-Phase Jet. AIAA/ASME 3rd Joint Thermophysics, Fluid, Plasma and Heat Transfer Conf, St. Louis, MO, Paper AIAA-82–0964

    Google Scholar 

  55. Modarress D, Tan H, Elghobashi S (1983) Two-Component LDA Measurements in a Two-Phase Turbulent Jet. AIAA 21st Aerospace Sciences Meeting, Reno, NV, Paper AIAA-83–0052

    Google Scholar 

  56. Modarress D, Wuerer J, Elghobashi S (1984) An Experimental Study of a Turbulent Round Two-Phase Jet. Chem Engineering Communications, vol 28, pp 341–354

    Article  Google Scholar 

  57. Naber JD, Reitz RD (1988) Modeling Engine Spray/Wall Impingement. SAE Paper 880107

    Book  Google Scholar 

  58. Nicholls JA (1972) Stream and Droplet Breakup by Shock Waves, NASA-SP-194, pp 126–128

    Google Scholar 

  59. Nishimura A, Assanis DN (2000) A Model for Primary Diesel Fuel Atomization Based on Cavitation Bubble Collapse Energy. 8th Int Conf on Liquid Atomization and Spray Systems, pp 1249–1256, Pasadena, CA

    Google Scholar 

  60. O’Rourke PJ (1981) Collective Drop Effects on Vaporizing Liquid Sprays. Ph.D. Thesis, Princeton University

    Google Scholar 

  61. O’Rourke PJ, Amsden AA (1987) The TAB Method for Numerical Calculation of Spray Droplet Breakup. SAE Paper 872089

    Book  Google Scholar 

  62. O’Rourke PJ, Bracco FV (1980) Modeling Drop Interactions in Thick Sprays and a Comparison with Experiments. Proc I Mech E, vol 9, pp 101–116

    Google Scholar 

  63. Ohnesorge W (1936) Die Bildung von Tropfen an Düsen und Auflösung flüssiger Strahlen (Formation of Drops by Nozzles and Breakup of Liquid Jets). Z Angew Math Mech, vol 16, p 355

    Article  Google Scholar 

  64. Otto F (2001) Fluid Mechanical Simulation of Combustion Engine Processes. Class Notes, University of Hanover, Germany

    Google Scholar 

  65. Otto F, Wirbeleit F, Willand J (2001) 3D-Simulation innermotorischer Prozesse. Proc 4th Dresdner Motorenkolloquium, pp 279–288, Dresden, Germany

    Google Scholar 

  66. Pagel S, Merker GP (2003) Modellierung der Tropfenverdampfung eines Mehrkomponentenbrennstoffs mit detaillierter Betrachtung des Tropfeninneren. Accepted for publication, Chemie Ingenieur Technik

    Google Scholar 

  67. Pagel S, Stiesch G, Merker GP (2002) Modeling the Evaporation of a Multicomponent Fuel. Proc 12th Int Heat Transfer Conf, pp 899–904, Grenoble, France

    Google Scholar 

  68. Patterson MA, Reitz RD (1998) Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission. SAE Paper 980131

    Book  Google Scholar 

  69. Pope SB (1978) An Explanation for the Turbulent Round-Jet/Plane-Jet Anomaly. AIAA J, vol 16, pp 279–281

    Article  Google Scholar 

  70. Post SL, Abraham J (2002) Modeling the Outcome of Drop-Drop Collisions in Diesel Sprays. Int J Multiphase Flow, vol 28, no 6, pp 997–1019

    Article  MATH  Google Scholar 

  71. Prosperetti A, Lezzi A (1986) Bubble Dynamics in a Compressible Liquid, Part 1. First Order Theory. J Fluid Mech, vol 168, pp 457–478

    Article  MATH  Google Scholar 

  72. Qian J, Law C (1997) Regimes of Coalescence and Separation in Droplet Collision. J Fluid Mechanics, vol 331, pp 59–80

    Article  Google Scholar 

  73. Ramos JI [1989) Internal Combustion Engine Modeling. Hemisphere, New York, NY

    Google Scholar 

  74. Ranz WE (1956) On Sprays and Spraying. Dept Engng Res, Bull 65, Penn State University

    Google Scholar 

  75. Reitz RD (1978) Atomization and Other Breakup Regimes of a Liquid Jet. Ph.D. Thesis, Princeton University

    Google Scholar 

  76. Reitz RD (1987) Modeling Atomization Processes in High-Pressure Vaporizing Sprays. Atomization and Spray Technology, vol 3, pp 309–337

    Google Scholar 

  77. Reitz RD (1990) A Photographic Study of Flash-Boiling Atomization. Aerosol Science and Technology, no 12, pp 561–569

    Article  Google Scholar 

  78. Reitz RD (1994) Computer Modeling of Sprays. Spray Technology Short Course, Pittsburgh, PA

    Google Scholar 

  79. Reitz RD (2000) Multiphase Flow and Heat Transfer. Class Notes, University of Wisconsin-Madison

    Google Scholar 

  80. Reitz RD, Bracco FV (1982) Mechanism of Atomization of Liquid Jets. The Physics of Fluids, vol 25, p 1730–1742

    Article  MATH  Google Scholar 

  81. Reitz RD, Bracco FV (1986) Mechanisms of Breakup of Round Liquid Jets. The Encyclopedia of Fluid Mechanics, ed Cheremisinoff NP, vol 3, pp 233–249, Gulf Publishing, Houston, TX

    Google Scholar 

  82. Reitz RD, Diwakar R (1986) Effect of Drop Breakup on Fuel Sprays. SAE Paper 860469

    Google Scholar 

  83. Renksizbulut M, Yuen MC (1983) Experimental Study of Droplet Evaporation in a High Temperature Air Stream. ASME J Heat Transfer, vol 105, pp 384–388

    Article  Google Scholar 

  84. Saha P, Abuaf N, Wu BJC (1984) A Nonequilibrium Vapor Generation Model for Flashing Flows. Transactions ASME, vol 106, pp 198–203

    Article  Google Scholar 

  85. Schmidt DP, Rutland CJ (2000) A New Droplet Collision Algorithm. J Comp Physics, vol 164, pp 62–80

    Article  MATH  Google Scholar 

  86. Schmidt DP, Senecal PK (2002) Improving the Numerical Accuracy of Spray Simulations. SAE Paper 2002–01–1113

    Book  Google Scholar 

  87. Schmidt DP, Nouar I, Senecal PK, Rutland CJ, Martin JK, Reitz RD (1999) Pressure-Swirl Atomization in the Near Field. SAE Paper 1999–01-0496

    Book  Google Scholar 

  88. Schmitz I, Leipertz, A, Ipp W (2002) Flash Boiling Effects on the Development of Gasoline Direct-Injection Engine Sprays. SAE Paper 2002–01–2661

    Book  Google Scholar 

  89. Senecal PJ, Schmidt DP, Nouar I, Rutland CJ, Reitz RD, Corradini ML (1999) Modeling High-Speed Viscous Liquid Sheet Atomization. Int J Multiphase Flow, vol 25, no 6–7, pp 1073–1097

    Article  MATH  Google Scholar 

  90. Sirignano WA (1993) Fluid Dynamics of Sprays. ASME J Fluids Engineering, vol 115, pp 345–378

    Article  Google Scholar 

  91. Squire HB (1953) Investigation of the Instability of a Moving Liquid Film. Brit J Appl Phys, vol 4, p 167–169

    Article  Google Scholar 

  92. Stiesch G, Merker GP, Tan Z, Reitz RD (2001) Modeling the Effect of Split Injections on DISI Engine Performance. SAE Paper 2001–01–0965

    Book  Google Scholar 

  93. Stow CD, Stainer RD (1977) The Physical Products of a Splashing Water Drop. Journal of the Meteorological Society of Japan, vol 55, pp 518–531

    Google Scholar 

  94. Su TF, Patterson MA, Reitz RD (1996) Experimental and Numerical Studies of High Pressure Multiple Injection Sprays. SAE Paper 960861

    Book  Google Scholar 

  95. Tamim J, Hallett WLH (1995) A Continuous Thermodynamics Model for Multi-component Droplet Vaporization. Chem Eng Sci, vol 50, no 18, pp 2933–2942

    Article  Google Scholar 

  96. Tanner FX (1997) Liquid Jet Atomization and Droplet Breakup Modeling of Non-Evaporating Diesel Fuel Sprays. SAE Paper 970050

    Book  Google Scholar 

  97. Tatschl R, v Künsberg Sarre C, Alajbegovic A, Winklhofer E (2000) Diesel Spray Brekaup-Up Modeling Including Multidimensional Cavitating Nozzle Flow Effects. Proc 16th ILASS Europe Conf, pp 1.9.1–1.9.9, Darmstadt, Germany

    Google Scholar 

  98. Tatschl R, v Künsberg Sarre C, v Berg E (2002) IC-Engine Spray Modeling — Status and Outlook. Proc 12th Int Multidim Engine Modeling Users Group Meeting, Detroit, MI

    Google Scholar 

  99. Taylor GI (1963) Generation of Ripples by Wind Blowing over a Viscous Fluid. in: Batchelor GK, The Scientific Papers of GI Talyor, vol 3, pp 244–254

    Google Scholar 

  100. Taylor GI (1963) The Instability of Liquid Surfaces when Accelerated in a Direction Perpendicular to their Planes, in: Batchelor GK, The Scientific Papers of GI Taylor, vol 3, pp 532–536, University Press, Cambridge

    Google Scholar 

  101. Taylor GI (1963) The Shape and Acceleration of a Drop in a High Speed Air Stream, in: Batchelor GK, The Scientific Papers of GI Taylor, vol 3, pp 457–464, University Press, Cambridge

    Google Scholar 

  102. Torda TP (1973) Evaporation of Drops and the Breakup of Sprays. Astronautica Acta, vol 18, p 383

    Google Scholar 

  103. VanDerWege BA, Lounsberry TH, Hochgreb S (2000) Numerical Modelihng of Fuel Sprays in DISI Engines Under Early-Injection Operating Conditions. SAE Paper 2000–01-0273

    Book  Google Scholar 

  104. Wachters LHJ, Westerling NAJ (1966) The Heat Transfer from a Hot Wall to Impinging Water Drops in the Spheroidal State. Chem Eng Sci, vol 21, pp 1047–1056

    Article  Google Scholar 

  105. Wan Y, Peters N (1997) Application of the Cross-Secctional Average Method to Calculations of the dense Spray Region in a Diesel Engine. SAE Paper 972866

    Book  Google Scholar 

  106. Wan Y, Peters N (1999) Scaling of Spray Penetration with Evaporation. Atomization and Sprays, vol 9, no 2, pp 111–132

    Google Scholar 

  107. Wierzba A (1993) Deformation and Breakup of Liquid Drops in a Gas Stream at Nearly Critical Weber Numbers. Experiments in Fluids, vol 9, pp 59–64

    Article  Google Scholar 

  108. Williams FA (1985) Combustion Theory, 2nd edn, Benjamin/Cummings, Menlo Park, CA

    Google Scholar 

  109. Willman B (1985) Continuous Thermodynamics of Fluid Mixtures. Ph.D. Thesis, Georgia Institute of Technology

    Google Scholar 

  110. Zhu GS, Reitz RD, Xin J, Takabayashi T (2001) Characteristics of Vaporizing Continuous Multi-Component Fuel Sprays in a Port Fuel Injection Gasoline Engine. SAE Paper 2001–01-1231

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stiesch, G. (2003). Multidimensional Models of Spray Processes. In: Modeling Engine Spray and Combustion Processes. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08790-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08790-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05629-1

  • Online ISBN: 978-3-662-08790-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics