Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 803 Accesses

Abstract

The abbreviation CFD stands for computational fluid dynamics which indicates the numerical solution of multidimensional flow problems that may be of unsteady and turbulent nature. In general, multidimensional flow problems are governed by conservation principles for mass energy and momentum. The application of these principles results in a set of partial differential equations in terms of time and space that need to be integrated numerically as they are too complex to be solved analytically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amsden AA, O’Rourke PJ, Butler TD (1989) KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays. Los Alamos National Laboratory, LA-11560-MS

    Google Scholar 

  2. Baehr HD, Stephan K (1998) Heat and Mass Transfer. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  3. Ferziger JH, Peric M (2002) Computational Methods for Fluid Dynamics. 3rd edn, Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  4. Han ZY, Reitz RD (1995) Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models. Combust Sci Tech, vol 106, pp 267–295

    Article  Google Scholar 

  5. Launder BE, Spalding DB (1974) The Numerical Computations of Turbulent Flows. Comp Meth Appl Mech Engng, vol 3, pp 269–289

    Article  MATH  Google Scholar 

  6. Launder BE, Reece G, Rodi W (1975) Progress in the Development of a Reynolds Stress Turbulence Closure. J Fluid Mech, vol 68

    Google Scholar 

  7. Lee J, Frouzakis C, Boulouchos K (2000) Opposed-Jet Hydrogen/Air Flames: Transition from a Diffusion to an Edge Flame. Proc Combust Inst, vol 28, Edinburgh, UK

    Google Scholar 

  8. Libby PA (1996) Introduction to Turbulence. Taylor and Francis, Washington, DC

    Google Scholar 

  9. Merker GP (1987) Konvektive Wärmeübertragung. Springer, Berlin, Germany

    Book  Google Scholar 

  10. Piomelli U, Ferziger JH, Moin P, Kim J (1989) New Approximate Boundary Conditions for Large Eddy Simulations of Wall-Bounded Flows. Phys Fluids, Al, pp 1061–1068

    Google Scholar 

  11. Rao S, Pomraning E, Rutland CJ (2001) A PDF Time-Scale Model for Diesel Combustion Using Large Eddy Simulation. Proc 11th Int Multidim Engine Modeling Users Group Meeting, Detroit, MI

    Google Scholar 

  12. Reitz RD (1994) Computer Modeling of Sprays. Spray Technology Short Course, Pittsburgh, PA

    Google Scholar 

  13. Tanner FX, Zhu GS, Reitz, RD (2000) Non-Equilibrium Turbulence Considerations for Combustion Processes in the Simulation of DI Diesel Engines. SAE Paper 2000–01-0586

    Book  Google Scholar 

  14. White FM (1991) Viscous Fluid Flow. 2nd edn, McGraw-Hill, New York, NY

    Google Scholar 

  15. White FM (1999) Fluid Mechanics. 4th edn, McGraw-Hill, New York, NY

    Google Scholar 

  16. Yakhot V, Orszag SA (1986) Renormalization Group Analysis of Turbulence. I. Basic Theory. J Sci Comp, vol 1, pp 3–51

    Article  MathSciNet  MATH  Google Scholar 

  17. Yakhot V, Smith LM (1992) The Renormalization Group, the ε-Expansion and Derivation of Turbulence Models. J Sci Comp, vol 7, pp 35–61

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stiesch, G. (2003). Fundamentals of Multidimensional CFD-Codes. In: Modeling Engine Spray and Combustion Processes. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08790-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08790-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05629-1

  • Online ISBN: 978-3-662-08790-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics