Fundamentals of Multidimensional CFD-Codes

  • Gunnar Stiesch
Part of the Heat and Mass Transfer book series (HMT)

Abstract

The abbreviation CFD stands for computational fluid dynamics which indicates the numerical solution of multidimensional flow problems that may be of unsteady and turbulent nature. In general, multidimensional flow problems are governed by conservation principles for mass energy and momentum. The application of these principles results in a set of partial differential equations in terms of time and space that need to be integrated numerically as they are too complex to be solved analytically.

Keywords

Combustion Enthalpy Diesel Compressibility Librium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Amsden AA, O’Rourke PJ, Butler TD (1989) KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays. Los Alamos National Laboratory, LA-11560-MSGoogle Scholar
  2. [2]
    Baehr HD, Stephan K (1998) Heat and Mass Transfer. Springer, Berlin, GermanyMATHCrossRefGoogle Scholar
  3. [3]
    Ferziger JH, Peric M (2002) Computational Methods for Fluid Dynamics. 3rd edn, Springer, Berlin, GermanyMATHCrossRefGoogle Scholar
  4. [4]
    Han ZY, Reitz RD (1995) Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models. Combust Sci Tech, vol 106, pp 267–295CrossRefGoogle Scholar
  5. [5]
    Launder BE, Spalding DB (1974) The Numerical Computations of Turbulent Flows. Comp Meth Appl Mech Engng, vol 3, pp 269–289MATHCrossRefGoogle Scholar
  6. [6]
    Launder BE, Reece G, Rodi W (1975) Progress in the Development of a Reynolds Stress Turbulence Closure. J Fluid Mech, vol 68Google Scholar
  7. [7]
    Lee J, Frouzakis C, Boulouchos K (2000) Opposed-Jet Hydrogen/Air Flames: Transition from a Diffusion to an Edge Flame. Proc Combust Inst, vol 28, Edinburgh, UKGoogle Scholar
  8. [8]
    Libby PA (1996) Introduction to Turbulence. Taylor and Francis, Washington, DCGoogle Scholar
  9. [9]
    Merker GP (1987) Konvektive Wärmeübertragung. Springer, Berlin, GermanyCrossRefGoogle Scholar
  10. [10]
    Piomelli U, Ferziger JH, Moin P, Kim J (1989) New Approximate Boundary Conditions for Large Eddy Simulations of Wall-Bounded Flows. Phys Fluids, Al, pp 1061–1068Google Scholar
  11. [11]
    Rao S, Pomraning E, Rutland CJ (2001) A PDF Time-Scale Model for Diesel Combustion Using Large Eddy Simulation. Proc 11th Int Multidim Engine Modeling Users Group Meeting, Detroit, MIGoogle Scholar
  12. [12]
    Reitz RD (1994) Computer Modeling of Sprays. Spray Technology Short Course, Pittsburgh, PAGoogle Scholar
  13. [13]
    Tanner FX, Zhu GS, Reitz, RD (2000) Non-Equilibrium Turbulence Considerations for Combustion Processes in the Simulation of DI Diesel Engines. SAE Paper 2000–01-0586CrossRefGoogle Scholar
  14. [14]
    White FM (1991) Viscous Fluid Flow. 2nd edn, McGraw-Hill, New York, NYGoogle Scholar
  15. [15]
    White FM (1999) Fluid Mechanics. 4th edn, McGraw-Hill, New York, NYGoogle Scholar
  16. [16]
    Yakhot V, Orszag SA (1986) Renormalization Group Analysis of Turbulence. I. Basic Theory. J Sci Comp, vol 1, pp 3–51MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Yakhot V, Smith LM (1992) The Renormalization Group, the ε-Expansion and Derivation of Turbulence Models. J Sci Comp, vol 7, pp 35–61MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Gunnar Stiesch
    • 1
  1. 1.Instit. f. Technische VerbrennungUniverstät HannoverHannoverGermany

Personalised recommendations