Diagenesis, Porosity, and Dolomitization

  • Erik Flügel


The preceding chapters provided information on the diagnostic criteria for ‘depositional microfacies’. This chapter deals with ‘diagenetic microfacies’ that reflects changes during lithification and rock history (Pl. 28). Diagenesis refers to physical, chemical and biological processes. The understanding of these processes and their products has high economic importance, because diagenetic criteria account for many of the petrophysical properties of carbonate rocks and determine their value as reservoir rocks and use in industry. Diagenetic studies require a combination of various methods, including standard optical petrography, cathodoluminescence, SEM observations, stable isotope analyses and rare element composition. The following text concentrates on diagenetic features that can be studied in thin sections. Comprehensive reviews of carbonate diagenesis can be found in textbooks listed under Basics in the reference list at the end of this chapter.


Calcite Crystal Pressure Solution Calcite Cement Carbonate Cement Deep Burial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambers and Petzold 1996; Butler 1969; Carballo et al. 1987; Chavetz and Rush 1994; Friedman 1980; Gebelein et al. 1980; Gunatilaka 1991; Illing et al. 1965; Lasemi et al. 1989; Mazzullo et al. 1987; McKenzie 1981; Patterson and Kinsman 1982; Shinn et al. 1965.Google Scholar


  1. Botz and Von der Borch 1984; Muir et al. 1980; Rosen et al. 1989; Simms 1984; Von der Borch 1976; Von der Borch and Lock 1979; Warren 1988; Wright 1999.Google Scholar


  1. Badiozamani 1973; Burns and Rossinsky 1989; Cander 1994; Choquette and Steinen 1980; Dunham and Olson 1980; Gill et al. 1995; Humphrey 1988, 2000; Humphrey and Quinn 1989; Land 1973; Meyers et al. 1997; Narkiewicz 1979; Ruppel and Cander 1988; Ward and Halley 1985.Google Scholar


  1. Aharon et al. 1987; Flood et al. 1996; Kastner 1984; Kaufman 1994; Land 1985; Machel and Burtin 1994; Mattes and Mountjoy 1980; Mullins et al. 1985; Saller 1984; Tucker and Wright 1990.Google Scholar


  1. Kohout 1967; Mullins et al. 1985.Google Scholar


  1. Barnaby and Read 1992; Dix 1993; Eren 1993; Gawthorpe 1987; Gillhaus 2000; Lee and Friedman 1987; Machel and Anderson 1989; Machel et al. 1994; Mattes and Mountjoy 1980; McHargue and Price 1982; Sternbach and Friedman 1984; Mountjoy 1991; Mountjoy and Halim-Dihardja 1991; Mountjoy et al. 1999; Reinhold 1998; Rosen and Holdren 1986; Sachan 1993; Schofield and Adams 1986; Sternbach and Friedman 1984, 1986.Google Scholar

Basics: Diagenesis, porosity and dolomitization Carbonate diagenesis: Overviews

  1. Bathurst, R.G.C. (1989): Early diagenesis in carbonate sediments. — In: Parker, A., Seilwood, B.W. (eds.): Sediment diagenesis — 345–377, Dordrecht Reidel)Google Scholar
  2. Berner, R.A. (1980): Early diagenesis as a theoretical approach. — 241 pp., Princeton (Princeton University Press)Google Scholar
  3. Garrison, R.E. (1981): Diagenesis of oceanic carbonate sediments: A review of the DSDP perspective. — Soc. Econ. Paleont. Min. Spec. Publ., 32, 181–207Google Scholar
  4. Macillreath, I.A., Morrow, D.W. (eds., 1990): Diagenesis. — Geoscience Canada Reprint Series, 4, 338 pp.Google Scholar
  5. Marshall, J.D. (1987): Diagenesis of sedimentary sequences. — Geol. Soc. America, Spec. Publ., 36, 368 pp.Google Scholar
  6. Moore, C.H. (1989): Carbonate diagenesis and porosity. — Developments in Sedimentology, 46, 338 pp.CrossRefGoogle Scholar
  7. Morse, J.W., Mackenzie, F.T. (1990): Geochemistry of sedimentary carbonates. — Developments in Sedimentology, 48, 707 pp.CrossRefGoogle Scholar
  8. Parker, A., Sellwood, B.W. (eds., 1983): Sediment diagenesis. — 427 pp., Dordrecht (Reidel)Google Scholar
  9. Tucker, M.E., Bathurst, R.G.C. (eds., 1990): Carbonate diagenesis. — Int. Assoc. Sedimentologists Reprint Series, 1, 312 pp.Google Scholar

Mineralogical constraints and processes

  1. Fernandez-Doau, L., Putnis, A., Prieto, M., Putnis, C.V. (1996): The role of magnesium in the crystallization of calcite and aragonite in a porous medium. — J. Sed. Research, A66, 482–491Google Scholar
  2. Folk, R.L. (1974): The natural history of calcium carbonate: effect of magnesium content and salinity. — J. Sed. Petrol., 44, 40–53Google Scholar
  3. Given, R.K., Wilkinson, B.H. (1985): Kinetic control of morphology, composition and mineralogy of abiotic sedimentary carbonates. — J. Sed. Petrol., 55, 109–119Google Scholar
  4. Reeder, R.E. (ed., 1983): Carbonates: mineralogy and chemistry. — Reviews in Mineralogy, 11, 394 pp.Google Scholar
  5. Richter, D.K. (1984): Zur Zusammensetzung und Diagenese natürlicher Mg-Calcite. — Bochumer Geologische und Geotechnische Arbeiten, 15, 310 pp.Google Scholar
  6. Walter, L.M., Morse, J.W. (1984): Magnesian calcite stabilities: a reevaluation. — Geochim. Cosmochim. Acta, 48, 1059–1069CrossRefGoogle Scholar
  7. Further reading: K034, K035Google Scholar

Diagenetic environments

  1. Choquette, P.W, James, N.P. (1987): Diagenesis, 12, Diagenesis in limestones, 3, The deep burial environment. — Geoscience Canada, 14, 3–35Google Scholar
  2. James, N.P., Choquette, P.W. (1990): Limestones — the meteoric diagenetic environment. — In: Macillreath, I.A., Morrow, D.W. (eds.): Diagenesis. — Geoscience Canada, 11, 161–194Google Scholar
  3. James, N.P., Choquette, P.W. (1990): Limestones — the burial diagenetic environments. — In: Macillreath, I.A., Morrow, D.W. (eds.): Diagenesis. — Geoscience Canada Reprint Series, 4, 75–111Google Scholar
  4. Longman, M.W. (1980): Carbonate diagenetic textures from nearsurface diagenetic environments. — Amer. Ass. Petrol. Geol. Bull., 64, 461–487Google Scholar
  5. Moore, C. (2001): Carbonate reservoirs. — 460 pp., Amsterdam (Elsevier)Google Scholar
  6. Schroeder, J.H., Purser, B.H. (eds., 1986): Reef diagenesis. — 455 pp., Berlin (Springer)Google Scholar
  7. Wanless, H.R. (1989): Burial diagenesis in limestones. — In: Parker, A., Sellwood, B.W. (eds.): Sediment diagenesis. — 379–417, Dordrecht (Reidel)Google Scholar
  8. Further reading: K034, K036, K037, K045, K050Google Scholar


  1. Anselmetti, F.S., Luthi, S., Eberli, G.F. (1998): Quantitative characterization of carbonate pore systems by digital image analysis. — Amer. Ass. Petrol. Geol. Bull., 82, 1815–1836Google Scholar
  2. Archie, G.E. (1952): Classification of carbonate reservoir rocks and petrophysical considerations. — Amer. Ass. Petrol. Geol. Bull., 36, 278–298Google Scholar
  3. Bathurst, R.G.S. (1986): Carbonate diagenesis and reservoir development: Conservation, destruction and creation of pores. — In: Bathurst, R.G.C., Land, L.S. (eds.): Carbonate deposition environments. Part 5. Diagenesis 1. — Colorado School of Mines Quarterly, 81, 1–25Google Scholar
  4. Chilingarian, G.V., Mazzullo, S., Rieke, A., Deminguez, G.C., Samaniego, F.Y. (1992, eds.): Carbonate reservoir characterization: a geologic-engineering analysis, part I. — 640 pp., Amsterdam (Elsevier)Google Scholar
  5. Choquette, P.W. and Pray, L. (1970): Geologic nomenclature and classification of porosity in sedimentary carbonates. — Amer. Ass. Petrol. Geol. Bull., 54, 207–250Google Scholar
  6. Enos, P. (1988): Evolution of pore space in the Poza Rica trend (mid-Cretaceous), Mexico. — Sedimentology, 35, 287–335CrossRefGoogle Scholar
  7. Enos, P., Savatzky, N.H. (1981): Pore networks in Holocene carbonate sediments. — J. Sed. Petrol., 51, 961–985Google Scholar
  8. Friedman, G.M., Ali, S.A. (eds., 1981): Diagenesis of carbonate rocks. Cement-porosity relationships. — Soc. Econ. Paleont. Miner., Reprint Series, 10, 295 pp.Google Scholar
  9. Kopaska-Merkel, D.C., Mann, S.D. (1993): Classification of lithified carbonates using ternary plots of pore facies: examples from the Jurassic Smackover Formation. — In: Rezak, R., Lavoie, D.L. (eds.): Carbonate microfabrics. — Frontiers in Sedimentary Geology, 265-277Google Scholar
  10. Moore, C. (2001): Carbonate reservoirs. — 460 pp., Amsterdam (Elsevier)Google Scholar
  11. Roehl, P.O., Choquette, P.W. (eds., 1985): Carbonate petroleum reservoirs. — 622 pp., Berlin (Springer)Google Scholar
  12. Schroeder, J. (1988): Spatial variations in the porosity development of carbonate sediments and rocks. — Facies, 18, 181–204CrossRefGoogle Scholar
  13. Further reading: K034, K073 to K076Google Scholar

Carbonate cements

  1. Bricker, O.P. (ed., 1973): Carbonate cements. — John Hopkins University Studies in Geology, 19, 376 pp.Google Scholar
  2. Harris, P.M., Kendall, C.G., Lerche, J. (1985): Carbonate cementation: a brief review. — In: Schneidermann, M., Harris, P.M. (eds.): Carbonate cements. — Soc. Econ. Paleont. Miner., Spec. Publ., 36, 79–95CrossRefGoogle Scholar
  3. Koch, R., Zinkernagel, U. (1994): Zur Zementation in Kalksteinen. — Zentralblatt für Geologie und Paläontologie, Teil I, 1994, 1353–1398Google Scholar
  4. Meyers, W.J. (1991): Calcite cement stratigraphy: an overview. — In: Barker, C.E. and Kopp, O.C. (eds.): Luminescence microscopy and spectroscopy; qualitative and quantitative application. — Soc. Econ. Paleont. Miner., Short Course, 25, 133–148Google Scholar
  5. Sandberg, P. (1985): Aragonite cements and their occurrence in ancient limestones. — In: Schneidermann, N., Harris, P.M. (eds.): Carbonate cements. — Soc. Econ. Paleont. Miner., Spec. Publ., 36, 33–58CrossRefGoogle Scholar
  6. Schneidermann, N., Harris, P.M. (1985): Carbonate cements. — Soc. Econ. Paleont. Miner., Spec. Publ., 36, 397 pp.Google Scholar
  7. Further reading: K039–K041, K048Google Scholar

Diagenetic textures

  1. Bathurst, R.G.C. (1987): Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction. — Sedimentology, 34, 749–778CrossRefGoogle Scholar
  2. Chilingarian, G.V. (1989): Compactional diagenesis. — In: Parker, A., Sellwood, B.W. (eds.): Sediment diagenesis, 57-166Google Scholar
  3. Hutcheon, I.E. (ed., 1989): Burial diagenesis. Short Course Handbook. — Mineralogical Association of Canada, 15, 499 pp.Google Scholar
  4. Logan, B.W. (1984): Pressure responses (deformation) in carbonate sediments and rocks — analysis and application, Canning Basin. — In: Purcell, P.G. (ed.): The Canning Basin, W.A. — Proceedings of the Geological Society of Western Australia/Petroleum Exploration Society of Australia, 235-251, PerthGoogle Scholar
  5. Logan, B.W., Semeniuk, V. (1976): Dynamic metamorphism; process and products in Devonian carbonate rocks; Canning basin, western Australia. — Geological Society of Australia, Spec. Publ., 6, 138 pp.Google Scholar
  6. Ricken, W. (1987): The carbonate compaction law; a new tool. — Sedimentology, 34, 571–584CrossRefGoogle Scholar
  7. Shinn, E.A., Robbin, D.M., Claypool, G.E. (1984): Compaction of modern sediments: implications for generations and expulsion of hydrocarbons. — In: Palacas, J.G. (ed.): Petroleum geochemistry and source rock potential of carbonate rocks. — Amer. Ass. Petrol. Geol., Studies in Geology, 18, 197–203Google Scholar
  8. Wanless, H.R. (1979): Limestone response to stress: Pressure solution and dolomitization. — J. Sed. Petrol., 49, 437–462Google Scholar
  9. Further reading: K046, K048, K100Google Scholar


  1. Folk, R.L. (1965): Some aspects of recrystallization in ancient limestones. — In: Pray, L.C., Murray, R.C. (eds.): Dolomitization and limestone diagenesis. — Soc. Econ. Paleont. Miner., Spec. Publ., 13, 14–48Google Scholar
  2. Friedman, G.M. (1965): Terminology of recrystallization textures and fabrics in sedimentary rocks. — J. Sed. Petrol., 35, 643–655Google Scholar
  3. Further reading: K034, K035, K059Google Scholar

Dolomitization and dedolomitization

  1. Allan, J.R., Wiggins, W.D. (1993): Dolomite reservoirs: Geochemical techniques for evaluating origin and distribution. — Continuing Education Courses Notes, Amer. Ass. Petrol. Geol., 36, 167 pp.Google Scholar
  2. Land, L.S. (1983): Dolomitization. — Amer. Ass. Petrol. Geol., Continuing Education Courses Notes, 24, 1–20Google Scholar
  3. Machel, H.G, Mountjoy, E.W.(1986): Chemistry and environments of dolomitization — a reappraisal. — Earth Sciences Revolutions, 23, 175–222CrossRefGoogle Scholar
  4. Purser, B., Tucker, M., Zenger, D. (eds., 1994): Dolomites. A volume in honour of Dolomieu. — Spec. Publ. Int. Ass. Sed., 21, 451 pp., Oxford (Blackwell)Google Scholar
  5. Randazzo, A.F., Zachos, N.G. (1983): Classification and description of dolomitic fabrics of rocks from Floran aquifer, U.S.A. — Sedimentary Geology, 37, 151–162CrossRefGoogle Scholar
  6. Sellwood, B.W., Scott, J., James, B., Evans, R., Marshall, J. (1987): Regional significance of dedolomitization in Great Oolite reservoir facies of S. England. — In: Brooks, J., Glennie, K. (eds.): Petroleum Geology of N.W Europe. — 129–137, London (Graham and Trotman)Google Scholar
  7. Shukla, C., Baker, D.V. (eds., 1988): Sedimentology and geochemistry of dolostones. — Soc. Econ. Paleont. Miner., Spec. Publ., 43, 266 pp.Google Scholar
  8. Sibley, D.F., Gregg, J.M. (1987): Classification of dolomitic rock textures. — J. Sed. Petrol, 57, 957–965Google Scholar
  9. Warren, J. (2000): Dolomite: occurrence, evolution and economically important associations. — Earth-Science Reviews, 52, 1–81CrossRefGoogle Scholar
  10. Zenger, D.H., Dunham, J.B., Ethington, R.L. (eds., 1980): Concepts and models of dolomitization. — Soc. Econ. Paleont. Miner., Spec. Publ., 28, 320 pp.Google Scholar
  11. Further reading: K060–K063Google Scholar

Metamorphic carbonates and marbles

  1. Burkhard, M. (1993): Calcite twins, their geometry, appearance and significance as stress-strain indicators of tectonic regime: a review. — Journal of Structural Geology, 15, 315–368CrossRefGoogle Scholar
  2. Herz, N., Waelkens, M. (eds., 1980): Classical marble: geochemistry, technology, trade. — NATO Advanced Science Institute Series, E, 153, 482 pp.Google Scholar
  3. Molli, G., Conti, P., Giorgetti, G., Meccheri, M., Oesterling, N. (2000): Microfabric study on the deformational and thermal history of the Alpi Apuane marbles (Carrara marbles), Italy. — J. of Structural Geology, 22, 1809–1825CrossRefGoogle Scholar
  4. Siegesmund, S., Weiss, T., Vollbrecht A. Ullemeyer, K. (1999): Marble as natural building stones: rock fabric, physical and mechanical properties. — Zeitschrift der deutschen geologischen Gesellschaft, 150, 237–257Google Scholar
  5. Further reading: K034, K051 to K057Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Erik Flügel
    • 1
  1. 1.Institute of PaleontologyErlangenGermany

Personalised recommendations