Carbonate Depositional Environments

  • Erik Flügel

Abstract

Knowing where modern carbonates occur, what they are composed of, and what their controls are is essential for evaluating microfacies data. The objectives of this chapter are to summarize the settings and environments in which carbonate sediments are formed and to document which classifications are used for differentiating these environments. Emphasis is placed on the definitions of terms.

Keywords

Phytoplankton Sedimentation Dolomite Pyrite Gravel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Basics: Classification of carbonate environments and obligatory reading

Classification

  1. Edwards, A.R. (1979): Classification of marine paleoenvironments. — Geol. Soc. New Zealand Newsletter, 48, p. 48Google Scholar
  2. Hedgpeth, J. (1957): Classification of marine environments. — In: Hedgpeth, J.E. (ed.): The treatise on marine ecology and paleoecology. Vol.1, Ecology. — Geol. Soc. America Mem., 67, 17–28Google Scholar
  3. Kennett, J. (1982): Marine geology. — 813 pp., Englewood Cliffs (Prentice Hall)Google Scholar
  4. Nybakken, J.W. (1993): Marine biology. An ecological approach. Third edition. — 462 pp., New York (Harper Collins)Google Scholar
  5. Summerhayes, C.P., Thorpe, S.A. (eds., 1996): Oceanography. An illustrated guide. — 352 pp., New York (Wiley)Google Scholar

Obligatory reading

  1. Bathurst, R.G.C. (1994): Carbonate sediments and their diagenesis. 2nd enlarged edition — Developments in Sedimentology, 12, 660 pp., Amsterdam (Elsevier)Google Scholar
  2. Bosellini, A. (1991): Introduzione allo studio delle rocce carbonatiche. — 317 pp., Ferrara (Italo Bovolenta)Google Scholar
  3. James, N.P., Kendall, A.C. (1992): Introduction to carbonate and evaporite facies models. — In: Walker, R.G., James N.P. (eds.): Facies models. Response to sea level change. — 265–275, Ottawa (Geol. Ass. Canada)Google Scholar
  4. Milliman J.D. (1974): Marine carbonates. — 375 pp., Berlin (Springer)Google Scholar
  5. Rao, C.P. (1996): Modern carbonates. Tropical, temperate, polar. — 206 pp., Howrah (Carbonates)Google Scholar
  6. Reading, H.E. (1996): Sedimentary environments, processes, stratigraphy. Third edition. — 688 pp., Oxford (Blackwell)Google Scholar
  7. Scholle, P.A., Bebout, D.G., Moore, C.H. (eds., 1983): Carbonate depositional environments. — Amer. Ass. Petrol. Geol. Mem., 33, 708 pp.Google Scholar
  8. Scoffin, T.P. (1987): An introduction to carbonate sediments and rocks. — 274 pp., Glasgow (Blackie)Google Scholar
  9. Tucker, M.E., Wright, V.P. (1990): Carbonate sedimentology. — 482 pp., Oxford (Blackwell)CrossRefGoogle Scholar
  10. Varney, M. (1996): The marine carbonate system. — In: Summerhayes, C.P., Thorpe, S.A. (eds.): Oceanography. An illustrated guide. — 182–194, New York (Wiley)Google Scholar
  11. Walker, R.G., James N.P. (eds., 1992): Facies models. Response to sea level change. — 409 pp., Ottawa (Geol. Ass. Canada)Google Scholar
  12. Wilson, J.L. (1975): Carbonate facies in geologic history. — 471 pp., Berlin (Springer)CrossRefGoogle Scholar

Basics: Non-marine carbonates

  1. Esteban, M., Klappa, C.F. (1983): Subaerial exposure environment. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (ed.): Carbonate depositional environments. — Mem. Am. Ass. Petrol. Geol., 33, 1–54Google Scholar
  2. Etheridge, F.G., Flores, R.M. (eds., 1981): Recent and ancient nonmarine depositional environments: models for exploration. — Soc. Econ. Paleont. Min. Spec. Publ., 31, 349 pp.Google Scholar
  3. James, N.P., Choquette, P.W. (1990): Limestone-The meteoric diagenetic environment. — In: McIlreath, I.A., Morrow, D.W. (eds.): Diagenesis. — Geoscience Canada, Reprint Series, 4, 35–73Google Scholar
  4. Pia, J. (1926): Pflanzen als Gesteinsbildner. — 355 pp., Berlin (Borntraeger)Google Scholar
  5. Pia, J. (1933): Die rezenten Kalksteine. — Mineralogisch-Petrographische Mitteilungen, Neue Folge, Ergänzungsband, 420 pp., LeipzigGoogle Scholar

Pedogenic carbonates, caliche, paleosols

  1. Esteban, M.C. (1975): Vadose pisolites and caliche. — Amer. Ass. Petrol. Geol. Bull., 60, 1048–1057Google Scholar
  2. Klappa, C.F. (1983): A process-response model for the formation of pedogenic calcretes. — In: Wilson, R.C.C. (ed.): Residual deposits. — Geol. Soc. London Spec. Publ., 11, 211–220CrossRefGoogle Scholar
  3. Reeves, C.C. (1976): Caliche. Origin, classification, morphology and uses. — 233 pp., Lubbock, Texas (Estacado Books)Google Scholar
  4. Reinhardt, J., Sigleo, W.R. (1988): Paleosols and weathering through geologic time: principles and application. — Geol. Soc. America Spec. Paper, 216, 181 pp.Google Scholar
  5. Retallak, G.J. (2001): Soils of the past. Second edition. — 416 pp., Oxford (Blackwell)CrossRefGoogle Scholar
  6. Wright, V.P. (ed., 1986): Paleosols. Their recognition and interpretation. — 315 pp., Oxford (Blackwell)Google Scholar
  7. Wright, V.P., Tucker, M.E. (1991): Calcretes. — Reprint Series Int. Ass. Sed., 2, 352 p., Oxford (Blackwell)Google Scholar

Cave carbonates, speleothems and karst

  1. Borsato, A., Frisia S., Jones B., Van der Borg, K. (2000): Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. — J. Sed. Research, A70, 1171–1182CrossRefGoogle Scholar
  2. Chafetz, H.S., Butler, J.C. (1980): Petrology of recent caliche, pisolites, spherulites and speleothem deposits from central Texas. — Sedimentology, 27, 497–518CrossRefGoogle Scholar
  3. Drybrodt, W (1988): Processes in karst systems-physics, chemistry, geology. — Springer Series in Physical Environments, 4, 288 pp., New York (Springer)Google Scholar
  4. Folk, R.L., Assereto, R. (1976): Comparative fabric of length-slow and length-fast calcite and calcitized aragonite in a Holocene speleothem, Carlsbad Cavern, New Mexico. — J. Sed. Petrol., 46, 486–496Google Scholar
  5. Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F. (2000): Calcite fabrics, growth mechanisms, and environments of formations in speleothems from the Italian Alps and southwestern Ireland. — J. Sed. Research, A70, 1183–1196CrossRefGoogle Scholar
  6. Choquette, P.W., James, N.P. (eds., 1988): Paleokarst. — 416 pp., New York (Springer)Google Scholar
  7. Fritz, R.D., Wilson, J.L., Yurewicz, D.A. (eds., 1993): Paleokarst related hydrocarbon reservoirs. — Soc. Econ. Paleont. Min. Core Workshop, 275 pp.Google Scholar
  8. Klinchouk, A.B., Ford, D.C., Palmer, A.N., Dreybrodt, W. (eds., 2000): Speleogenesis: evolution of karst aquifers. — 527 pp., Huntsville (National Speleological Society)Google Scholar
  9. Mylroie, J.E., Carew, J.L., Vacher, H.L. (1995): Karst development in the Bahamas and Bermuda. — In: Curran, H.A., White, B. (eds.): Terrestrial and marine geology of Bahamas and Bermuda. — Geol. Soc. America Spec. Paper, 300, 251–267CrossRefGoogle Scholar
  10. Purdy, E.G. Waltham, D. (1999): Reservoir implication of modern karst topography. — Amer. Ass. Petrol. Geol. Bull., 83, 1774–1794Google Scholar
  11. Thrailkill, J. (1976): Speleothems. — In: Walter, M.E. (ed.): Stromatolites. — 73–86, Amsterdam (Elsevier)CrossRefGoogle Scholar
  12. Tietz, G.F. (1988): Zur Genese rezenter Karbonatbildungen in Dolomithöhlen Frankens. — Karst und Höhle, 1988, 7–79Google Scholar
  13. Further reading: K031Google Scholar

Eolian carbonates

  1. Abegg, F.E.R., Harris, P.M., Loope, D.B. (eds., 2001): Modern and ancient carbonate eolianites: sedimentology, sequence stratigraphy and diagenesis. — SEPM Spec. Publ., 71, 214 pp.Google Scholar
  2. Bigarella, J.J. (1972): Eolian environments: their characteristics, recognition, and importance. — Soc. Econ. Paleont. Min. Spec. Publ., 16, 12–61Google Scholar
  3. Brookfield, M.E. (1992): Eolian systems. — In: Walker, R.G., James, N.P. (eds.): Facies models. Response to sea level change. — 143–156, Ottawa (Geol. Ass. Canada)Google Scholar
  4. Caputo, M.V. (1995): Sedimentary architecture of Pleistocene eolian calcarenites, San Salvador Island, Bahamas. — Geol. Soc. America Spec. Paper, 300, 63–76Google Scholar
  5. McKee, E., Ward, C.W. (1983): Eolian environment. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.): Carbonate depositional environments. — Amer. Ass. Petrol. Geol. Mem., 33, 131–170Google Scholar
  6. Pye, K. (1994): Aeolian sediments: ancient and modern. — Spec. Publ. Int. Ass. Sedimentologists., 16, 192 pp.Google Scholar
  7. Sayles, R.W (1931): Bermuda during the Ice Age. — American Academy of Arts and Sciences, 66, 381–468CrossRefGoogle Scholar
  8. Further reading: K 032Google Scholar

Glacial carbonates

  1. Edwards, M. (1986): Glacial environments. — In: Reading, H.G. (ed.): Sedimentary environment and facies. — 445–470, Oxford (Blackwell)Google Scholar
  2. Eyles, N., Eyles, C.H. (1992): Glacial depositional systems. — In: Walker, R.G., James, N.P. (eds.): Facies models. Response to sea level change. — 73–100, Ottawa (Geol. Ass. Canada)Google Scholar
  3. Fairchild, I.J., Bradby, L., Spiro, B. (1993): Carbonate diagenesis in ice. — Geology, 21, 901–904CrossRefGoogle Scholar
  4. ai]Fairchild, I.J., Spiro, B. (1990): Carbonate minerals in glacial sediments: Geochemical clues to paleoenvironment. — In: Scource, J.D., Dowdeswell, J.A. (eds): Glacimarine environments and processes. — Geol. Soc. London Spec. Publ., 53, 241–256Google Scholar
  5. Suess, E., Balzer, W, Hesse, K-F, Müller, P.J., Ungerer, C.A., Wefer, G. (1982): Calcium carbonate hexahydrate from organic rich sediments of the Antarctic shelf: precursors of glendolites. — Science, 216, 1128–1131, WashingtonCrossRefGoogle Scholar
  6. Shearman, DJ., Smith, A.J. (1985): Ikaite, the parent mineral of jarrowite-type pseudomorphs. — Proc. Geol. Ass. London, 96, 305–314, LondonCrossRefGoogle Scholar
  7. Further reading: K210Google Scholar

Calcareous tufa and travertine

  1. Andrews, J.E., Pedley, M., Dennis, P.F. (2000): Paleoenvironmental records in Holocene Spanish tufas: a stable isotope approach in search of reliable climatic archives. — Sedimentology, 47, 961–971CrossRefGoogle Scholar
  2. Arp, G., Wedemeyer, N., Reitner, J. (2001): Fluvial tufa formation in a hard-water creek (Deinschwanger Bach, Franconian Alb, Germany). — Facies, 44, 1–22CrossRefGoogle Scholar
  3. Chafetz, H.S., Folk, R.L. (1984): Travertines: depositional morphology and the bacterially constructed constituents. — J. Sed. Petrol., 54, 289–316Google Scholar
  4. Folk, R.L., Chafetz, H.S. (1983): Pisoliths (pisoids) in Quaternary travertines of Tivoli, Italy. — In: Peryt, T.M. (ed.): Coated grains. — 471–487, Berlin (Springer)Google Scholar
  5. Ford, T.D., Pedley, H.M. (1996): A review of tufa and travertine deposits of the world. — Earth-Science Reviews, 41, 117–175CrossRefGoogle Scholar
  6. Irion, G., Müller, G. (1968): Mineralogy, petrology and chemical composition of calcareous tufa from the Schwäbische Alb, Germany. — In: Müller, G., Friedman, G.M. (eds.): Recent developments in carbonate sedimentology in central Europe. — 157–171, Berlin (Springer)CrossRefGoogle Scholar
  7. Julia, R. (1983): Travertines. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.): Carbonate depositional environments. — American Association of Petroleum Geologists Mem., 33, 64–72Google Scholar
  8. Koban, C.G. (1993): Faziesanalyse und Genese der quartären Sauerwasserkalke von Stuttgart, Baden-Württemberg. — Profil, 5, 47–118Google Scholar
  9. Koban, C.G., Schweigert, G. (1993): Microbial origin of travertine fabrics. Two examples from southern Germany (Pleistocene Stuttgart travertines and Miocene Riedöschingen travertine). — Facies, 29, 251–264CrossRefGoogle Scholar
  10. Pedley, H.M. (1990): Classification and environmental models of cool freshwater tufas. — Sed. Geol., 68, 143–154CrossRefGoogle Scholar
  11. Pedley, M. (1992): Freshwater (phytoherm) reefs: the role of biofilms and their bearing on marine reef cementation. — Sed. Geol., 79, 255–274CrossRefGoogle Scholar
  12. Pedley, M. (2000): Ambient temperature freshwater microbial tufas. — In: Riding, R.E., Awramik, S.M. (eds.): Microbial sediments. — 177–186, Berlin (Springer)Google Scholar
  13. Pentecost, A., Whitton, B.A. (2000): Limestones. — In: Whitton, B.A., Potts, M. (eds.): The ecology of cyanobacteria. — 257–279, Dordrecht (Kluver)Google Scholar
  14. Renault, R.W., Jones, B. (2000): Microbial precipitates around continental hot springs and geysers. — In: Riding, R.E., Awramik, S.E. (eds.): Microbial sediments. — 187–195, Berlin (Springer)CrossRefGoogle Scholar
  15. Riding, R. (1991): Classification of microbial carbonates. — In: Riding, R. (ed.): Calcareous algae and stromatolites. — 21–51, Berlin (Springer)CrossRefGoogle Scholar
  16. Schweigert, G. (1996): Vergleichende Faziesanalyse, Paläoökologie und paläogeographisches Umfeld tertiärer Süßwasserkarbonate auf der westlichen Schwäbischen Alb und im Hegau (Baden-Württemberg). — Profil, 9, 1–100Google Scholar
  17. Further reading: K029Google Scholar

Lacustrine carbonates

  1. Allen, P.A., Collinson, J.D. (1986): Lakes. — In: Reading, H.G. (ed.): Sedimentary environments and facies. Second edition. — 63–94, Oxford (Blackwell)Google Scholar
  2. Anadon, P., Carrera, L., Kelts, K. (eds., 1991): Lacustrine facies analysis. — Spec. Publ. Intern. Ass. Sed., 13, 318 pp.Google Scholar
  3. Anderson, R.Y., Dean, W.E. (1988): Lacustrine varve formation through time. — Palaeogeogr., Palaeoclimat., Palaeoecol., 62, 215–235, AmsterdamCrossRefGoogle Scholar
  4. Dean, W.E., Fouch, T.D. (1983): Lacustrine environment. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.): Carbonate depositional environments. — Amer. Ass. Petrol. Geol. Mem., 33, 97–130Google Scholar
  5. Forester, R.M. (ed., 1987): Paleo-lacustrine theme issue. — Palaios, 2, 412–522Google Scholar
  6. Eugster, H.P., Hardie, L.A. (1978): Saline lakes. — In: Lerman, A. (ed.): Lakes. Chemistry, geology, physics. — 237–293, Berlin (Springer)Google Scholar
  7. Friedman, G.M., Krumbein, W. (1984): Hypersaline exosystems. — Ecological Studies, Analysis and Synthesis, 35, 500 pp., Berlin (Springer)Google Scholar
  8. Hakanson, L., Jansson, M. (1983): Principles of lake sedimentation. — 316 pp., Berlin (Springer)CrossRefGoogle Scholar
  9. Katz, B.J. (ed., 1990): Lacustrine basin exploration. Case studies and modern analogs. — Mem. Amer. Ass. Petrol. Geol., 50, 340 pp.Google Scholar
  10. Kelts, K., Talbot, M. (1990): Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions. — In: Tilzer, M.M., Serruya, C. (eds.): Large lakes: ecological structure and function. — 288–314, Berlin (Springer)CrossRefGoogle Scholar
  11. Matter, A., Tucker, M.E. (eds., 1978): Modern and ancient lake sediments. — Int. Ass. Sedimentologists Spec. Publ., 2, 290 pp., OxfordGoogle Scholar
  12. Picard, M.D., High, L.R. (1972): Criteria for recognizing lacustrine rocks. — In: Rigby, J.K., Hamblin, W.K. (eds.): Recognition of ancient sedimentary environments. — Soc. Econ. Paleont. Min. Spec. Publ., 16, 108–145Google Scholar
  13. Picard, M.D., High, L.R. (1981): Physical stratigraphy of ancient lacustrine deposits. — In: Ethridge, F.G., Flores, R.M. (eds.): Recent and ancient nonmarine depositional environments: models for exploration. — Soc. Econ. Paleont. Min. Spec. Publ., 31, 233–259Google Scholar
  14. Platt, N.H., Wright, V.P. (1991): Lacustrine carbonates: facies models, facies distribution and hydrocarbon aspects. — In: Anadon, P., Carrera, L., Kelts, K. (eds.,): Lacustrine facies analysis. — Spec. Publ. Intern. Ass. Sedimentologists, 13, 55–74, OxfordGoogle Scholar
  15. Renault, R.W., Last, W.M. (eds., 1994): Sedimentology and geochemistry of modern and ancient saline lakes. — Soc. Econ. Paleont. Min. Spec. Publ., 50, 334 pp.Google Scholar
  16. Serruya, C., Pollingher, U. (1983): Lakes of the warm belt. — 569 pp., New York (Cambridge Univ. Press)Google Scholar
  17. Talbot, M.R., Kelts, K. (eds., 1989): The Phanerozoic record of lacustrine basins and their environmental signals. — Palaeogeogr., Palaeoclimat., Palaeoecol., Special Issue, 70, 304 pp., AmsterdamGoogle Scholar
  18. Torgersen, T. De Deckker, P., Chivas, A.R., Bowler, J.M. (1986): Salt lakes: a discussion of processes influencing paleoenvironmental interpretations and recommendation for future studies. — Palaeogeogr., Palaeoclimat., Palaeoecol., 54, 7–19CrossRefGoogle Scholar
  19. Wright, V. P. (1990): Lacustrine carbonates. — In: Tucker, M., Wright, V.P. (eds.): Carbonate sedimentology. — 164–189, Oxford (Blackwell)Google Scholar
  20. Further reading: K025, K026, K027Google Scholar

Fluvial carbonates

  1. Galli, G., Sarti, C. (1989): Morphology and microstructures of Holocene freshwater-stream cyanobacterial stromatolites (Villa Ghigi, Bologna, Italy). — Rev. Paleobiol., 8, 39–49Google Scholar
  2. McGannon, D.E. (1975): Primary fluvial oolites. — J. Sed. Petrol., 45, 719–727Google Scholar
  3. Nickel, E. (1985): Carbonates in alluvial fan systems. An approach to physiography, sedimentology and diagenesis. — Sed. Geol., 42, 83–104Google Scholar
  4. Ordonez, S., Garcia Del Cura, M.A. (1983): Recent and Tertiary fluvial carbonates in Central Spain. — In: Collinson, J.D., Lewing, J. (eds.): Modern and ancient fluvial systems. — Int. Ass. Sedimentologists Spec. Publ., 6, 485–497CrossRefGoogle Scholar
  5. Smith, N., Rogers, J. (1999): Fluvial sedimentology VI. — Int. Ass. Sedimentologists Spec.Publ., 28, 488 pp., OxfordGoogle Scholar
  6. Verrecchia, E.P, Freytet, P., Julien, J., Baltzer, F. (1997): The unusual hydrodynamical behaviour of freshwater oncolites. — Sed. Geol., 113, 225–243CrossRefGoogle Scholar

Palustrine carbonates

  1. Freytet, P., Plaziat, J.-C. (1982): Continental carbonate sedimentation and pedogenesis — Late Cretaceous and Early Tertiary of southern France. — Contributions to Sedimentology, 12, 213 pp., StuttgartGoogle Scholar
  2. Monty, C.V., Hardie, L.A. (1976): The geological significance of freshwater bluegreen algal marsh. — In: Walter, M.R. (ed.): Stromatolites. — Developments in Sedimentology, 20, 447–477, Amsterdam (Elsevier)CrossRefGoogle Scholar
  3. Platt, N.H. (1992): Fresh-water carbonates from the Lower Freshwater Molasse (Oligocene, western Switzerland). sedimentology and stable isotopes. — Sed. Geol., 78, 81–99CrossRefGoogle Scholar
  4. Platt, N.H., Wright, V.P. (1992): Palustrine carbonates and the Florida Everglades: towards an exposure index for the freshwater environment. — J. Sed. Petrol., 52, 1058–1071Google Scholar
  5. Wright, V.P., Platt, N.H. (1995): Seasonal wetland carbonate sequences and dynamic catenas: a re-appraisal of palustrine limestones. — Sed. Geol., 99, 65–71CrossRefGoogle Scholar
  6. Further reading: K 030Google Scholar

Basics: Modern transitional environments

  1. Ginsburg, R.N. (ed., 1975): Tidal deposits, a case book of Recent examples and fossil counterparts. — 428 pp., Berlin (Springer)Google Scholar
  2. Hardie, L.A. (ed. 1977): Sedimentation on the modern tidal flats of Northwest Andros Island. — John opkins University Studies in Geology, 22, 202 pp.Google Scholar
  3. Hardie, L.A., Shinn, E.A. (1986): Carbonate depositional environments, modern and ancient. Part 3. Tidal flats. — Colorado School of Mines Quarterly, 81, 1–74Google Scholar
  4. Inden, R.F., Moore, C.H. (1983): Beach environment. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.): Carbonate depositional environments. — American Asociation of Petroleum Geolists Memoirs, 33, 211–265Google Scholar
  5. Pratt, B.R., James, N.P., Cowan, C.A. (1992): Peritidal carbonates. — In: Walker, R.G., James, N.R (eds.): Facies models. Response to sea level change. — 303–322, Ottawa (Geological Association Canada)Google Scholar
  6. Shinn, E.A. (1983): Tidal flat environments. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.): Carbonate depositional environments. — American Association of Petroleum Geolists Memoir, 33, 171–210Google Scholar
  7. Shinn, E.A. (1986): Modern carbonate tidal flats: their diagnostic features. — Colorado School of Mines Quart. 81, 7–35Google Scholar
  8. Neumeier, U. (1999): Experimental modelling of beachrock cementation under microbial influence. — Sedimentary Geology, 126, 35–46CrossRefGoogle Scholar
  9. Wright, V.P. (1984): Peritidal carbonate facies models: a review. — Geological Journal, 19, 309–325CrossRefGoogle Scholar
  10. Wright, V.P.: (1990): Peritidal carbonates. — In: Tucker, M.E., Wright, V.P.: Carbonate sedimentology. — 137–164, Oxford (Blackwell)Google Scholar
  11. Further reading: K019, K020Google Scholar

Basics: Modern shallow-marine carbonate environments

  1. Ahr, W.M. (1973): The carbonate ramp: an alternative to the shelf model. — Transact. Gulf Coast Ass. Geol. Soc., 23, 221–225Google Scholar
  2. Ahr, W.M. (1998): Carbonate ramps, 1973–1996: a historical review. — In: Wright, V.P., Burchette, T.P. (eds.): Carbonate ramps. — Geol. Soc. London Spec. Publ., 149, 7–14CrossRefGoogle Scholar
  3. Burchette, T.P., Wright, V.P. (1992): Carbonate ramp depositional systems. — Sed. Geol., 79, 3–57CrossRefGoogle Scholar
  4. Crevello, P.D., Wilson, J.L., Sarg, J.F., Read, J.F. (eds., 1989): Controls on carbonate platform and basin development. — Soc. Econ. Paleont. Min. Spec. Publ., 44, 405 pp.Google Scholar
  5. Enos, P. (1983): Shelf environment. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.): Carbonate depositional environments. — Amer. Ass. Petrol. Geol. Mem., 33, 267–296Google Scholar
  6. Halley, R.B., Harris, P.M., Hines, A.C. (1983): Bank margin environment. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.): Carbonate depositional environments. — Amer. Ass. Petrol. Geol. Mem., 33, 463–506Google Scholar
  7. Harris, P.M., Moore, C.H., Wilson, J.L. (1985): Carbonate depositional environments. Modern and ancient. Part 2: Carbonate platforms. — Colorado School of Mines Quart., 80, 1–60Google Scholar
  8. Hottinger, L. (1989): Conditions for generating carbonate platforms. — Mem. Soc. Geol. Ital., 40, 265–271Google Scholar
  9. Irwin, M.L. (1965): General theory of epeiric clear water sedimentation. — Amer. Ass. Petrol. Geol. Bull., 49, 445–459Google Scholar
  10. James, N.P., Bourque, P.-A. (1992): Reefs and mounds. — In: Walker, R.G., James, N.P. (eds.): Facies models. Response to sea level change. — 323–348, Ottawa (Geol. Ass. Canada)Google Scholar
  11. James, N.P., Kendall, A.C. (1992): Introduction to carbonate and evaporite facies models. — In: Walker, R.G., James, N.P. (eds.): Facies Models. Response to sea level change. — 265–275, Ottawa (Geol. Ass. Canada)Google Scholar
  12. James, N.R, Mountjoy, E.W (1983): Shelf slope break in fossil carbonate platforms: An overview. — Soc. Econ. Paleont. Min. Spec. Publ., 33, 189–206Google Scholar
  13. Jones, B., Desrochers, A. (1992): Shallow platform carbonates. — In: Walker, R.G., James, N.P. (eds.): Facies models. Response to sea level change. — 277–301, Ottawa (Geol. Ass. Canada)Google Scholar
  14. Read, J.F. (1982): Carbonate platforms of passive (extensional) continental margin-types, characteristics and evolution. — Tectonophysics, 81, 195–212CrossRefGoogle Scholar
  15. Read, J.F. (1985): Carbonate platform facies models. — Amer. Ass. Petrol. Geol. Bull., 69, 1–21Google Scholar
  16. Schlager, W. (1981): The paradox of drowned reefs and carbonate platforms. — Geol. Soc. Amer. Bull., 92, 197–211CrossRefGoogle Scholar
  17. Schlager, W. (1989): Drowning unconformities on carbonate platforms. — Soc. Econ. Paleont. Min. Spec. Publ., 44, 15–25Google Scholar
  18. Schlager, W. (1992): Sedimentology and sequence stratigraphy of reefs and carbonate platforms. — Continuing Education Course Notes, 34, 71 pp.Google Scholar
  19. Schlager, W. (2000): Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems. — In: Insalaco, E., Skelton, P.W, Palmer, T.J. (eds.): Carbonate platform systems: components and interactions. — Geol. Soc. London Spec. Publ., 178, 217–227CrossRefGoogle Scholar
  20. Scholle, P.A., Bebout, D.G., Moore, C.H. (eds., 1983): Carbonate depositional environments. — Amer. Ass. Petrol. Geol. Mem., 33, 708 pp.Google Scholar
  21. Sellwood, B.W. (1996): Shallow-marine carbonate environments. — In: Reading, H.G. (ed.): Sedimentary environments and facies. — 283–356, Oxford (Blackwell)Google Scholar
  22. Tucker, M.E. (1985): Shallow-marine carbonate facies and facies models. — In: Brenchley, P., Williams, B.P.J. (eds.): Sedimentology, recent developments and applied aspects. — 147–169, Oxford (Blackwell)Google Scholar
  23. Tucker, M.E., Wilson, J.L., Crevello, P.D., Sarg, J.R., Read, J.F. (eds., 1990): Carbonate platforms. Facies, sequences and evolution. — Intern. Ass. Sedimentologists Spec. Publ., 9, 328 pp., OxfordGoogle Scholar
  24. Wilson, J.L. (1975): Carbonate facies in geologic history. — 411 pp., New York (Springer)CrossRefGoogle Scholar
  25. Wright, V.P., Burchette, T.P. (1996): Shallow-water carbonate environment. — In: Reading, H.G. (ed.): Sedimentary environments: processes, facies, stratigraphy. — 325–394, Oxford (Blackwell)Google Scholar
  26. Wright, V.P., Burchette, T.P. (eds., 1999): Carbonate ramps: an introduction. — Geol. Soc. London Spec. Publ., 149, 1–5Google Scholar
  27. Further reading: K018, K019, K020, K190Google Scholar

Basics: Modern non-tropical temperate and polar carbonates

  1. Andruleit, H., Freiwald, A., Schäfer, P. (1996): Bioclastic carbonate sediments on the southwestern Svalbard shelf. — Marine Geology, 134, 163–182CrossRefGoogle Scholar
  2. Bader, B. (2001): Modern Bryomol-sediments in a cool-water, high-energy setting: the inner shelf off Northern Brittany. — Facies, 44, 81–104CrossRefGoogle Scholar
  3. Bone, Y., James, N.P. (1993): Bryozoans as carbonate sediment producers on the cool-water Lacepede Shelf, southern Australia. — Sed. Geol., 86, 247–271CrossRefGoogle Scholar
  4. Boreen, T.D., James, N.P. (1993): Holocene sediment dynamics on a cool-water shelf: Otway, southeastern Australia. — J. Sed. Petrol., 63, 574–588Google Scholar
  5. Bosence, D.W. (1985): The Coralligene of the Mediterranean-a Recent analog for Tertiary coralline algal limestones. — In: Toomey, D.F., Nitecki, M.H. (eds.): Paleoalgology. — 215–225, Berlin (Springer)Google Scholar
  6. Briggs, J.C. (1974): Marine zoogeography. — 475 pp., New York (McGrawHill)Google Scholar
  7. Cairns, S.D., Stanley, G.D. (1981): Ahermatypic coral banks: living and fossil counterparts. — Proc. 4th Int. Coral Reef Symp. Manila, 1, 611–618Google Scholar
  8. Colantoni, P., Cremona, G., Ligi, M., Borsetti, A.M., Cate, F. (1985): The Adventure Bank (off Southwestern Sicily): a present day example of carbonate shelf sedimentation. — Giorn. Geol. Ser. 3, 47, 165–180Google Scholar
  9. Domack, E.W. (1988): Biogenic facies in the Antarctic glacimarine environment: basis for a polar glacimarine summary. — Palaeogeogr., Palaeoclimat., Palaeoecol., 63, 357–372CrossRefGoogle Scholar
  10. Farrow, G.E., Fyfe, J.A. (1988): Bioerosion and carbonate mud production on high-latitude shelves. — In: Nelson, C.S. (ed.): Non-tropical shelf carbonates — modern and ancient. — Sed. Geol., 60, 281–297Google Scholar
  11. Fornos, J.J., Forteza, V., Jaume, C., Martinez-Taberner, A. (1992): Present-day Halimeda carbonate sediments in temperate Mediterranean embayments: Fornells, Balearic Islands. — Sed. Geol., 75, 283–293CrossRefGoogle Scholar
  12. Freiwald, A. (1993): Coralline algal maerl frameworks — islands within the phaeophytic kelp belt. — Facies, 29, 133–148CrossRefGoogle Scholar
  13. Freiwald, A. (1998a): Geobiology of Lophelia pertusa in the North Atlantic. — Habilitation Thesis University Bremen, 194 pp.Google Scholar
  14. Freiwald, A. (1998b): Modern nearshore cold-temperate calcareous sediments in the Troms District, Northern Norway. — J. Sed. Research, A68, 763–776CrossRefGoogle Scholar
  15. Freiwald, A., Henrich, R. (1994): Reefal coralline algal buildups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. — Sedimentology, 41, 963–984CrossRefGoogle Scholar
  16. Freiwald, A., Henrich, R., Pätzold, J. (1997): Anatomy of a deep-water coral reef mound from the Stjernsund, West Finnmark, Northern Norway. — In: James, N.P., Clarke, J.A.D. (eds.): Cool-water carbonates. — Soc. Econ. Paleont. Min., Spec. Publ., 56, 141–162CrossRefGoogle Scholar
  17. Freiwald, A., Henrich, R., Schäfer, P., Willkomm, H. (1991): The significance of high-boreal to subarctic maerl deposits in Northern Norway to reconstruct Holocene climatic changes and sea level oscillations. — Facies, 25, 315–340CrossRefGoogle Scholar
  18. Freiwald, A., Wilson, J.B. (1998): Taphonomy of modern deep, cold-temperate water coral reefs. — Historical Biology, 13, 37–52CrossRefGoogle Scholar
  19. Gillespie, J.L., Nelson, C.S. (1997): Mixed siliciclastic-skeletal carbonate facies on Wanganui Shelf, New Zealand: a contribution to the temperate carbonate model. — In: James, N.P., Clarke, J.A.D. (eds.): Cool-water carbonates. — Soc. Econ. Paleont. Min., Spec. Publ., 56, 127–140CrossRefGoogle Scholar
  20. Halfar, J., Godinez-Orta, L., Ingle, J.C. (2000): Microfacies analysis of recent carbonate environments in the Southern Gulf of California, Mexico — a model for warm-temperature to subtropical carbonate formation. — Palaios, 15, 323–342CrossRefGoogle Scholar
  21. Henrich, R., Freiwald, A., Schäfer, P. (1997): Evolution of an Arctic open-shelf carbonate platform, Spitsbergen Bank (Barents Sea). — In: James, N.P., Clarke, J.A.D. (eds.): Cool-water carbonates. — Soc. Econ. Paleont. Min., Spec. Publ., 56, 163–181CrossRefGoogle Scholar
  22. Henrich, R., Freiwald, A., Wehrmann, A., Schäfer, P., Samtleben, C., Zankl, H. (1996): Nordic cold-water carbonates: Occurrences and controls. — Göttinger Arb. Geol. Paläont, Sonderband, 2, 35–52Google Scholar
  23. Henrich, R., Hartmann, M., Reitner, J., Schäfer, P., Freiwald, A., Steinmetz, S., Dietrich, P., Thiede, J. (1992): Facies belts and communities of the arctic Vestrisbanken Seamount (Central Greenland Sea). — Facies, 27, 71–104CrossRefGoogle Scholar
  24. James, N.P. (1997): The cool-water carbonate depositional realm. — In: James, N.P., Clarke, J.A.D. (eds.): Cool-water carbonates. — Soc. Econ. Paleont. Min., Spec. Publ., 56, 1–20CrossRefGoogle Scholar
  25. James, N.P., Bone, Y. (1989): Petrogenesis of Cenozoic, temperate water calcarenites, South Australia: a model for meteoric/shallow burial diagenesis of shallow water calcite sediments. — J. Sed. Petrol., 59, 191–204Google Scholar
  26. James, N.P, Clarke, A.D. (eds., 1997): Cool-water carbonates. — Soc. Econ. Paleont. Min., Spec. Publ., 56, 440 pp.Google Scholar
  27. James, N., Collins, L.B., Bone, Y., Hallock, P. (1999): Subtropical carbonates in a temperate realm: modern sediments on the southwest Australian shelf. — J. Sed. Petrol., 69, 1297–1321CrossRefGoogle Scholar
  28. Lees, A. (1975): Possible influences of salinity and temperature on modern shelf carbonate sedimentation. — Marine Geol., 19, 159–198CrossRefGoogle Scholar
  29. Lees, A., Buller, A.T. (1972): Modern temperate-water and warm-water shelf carbonate sediments contrasted. — Marine Geol., 13, M67–M73CrossRefGoogle Scholar
  30. Macintyre, I.G. (1988): Modern coral reefs of western Atlantic: new geological perspective. — Amer. Ass. Petrol. Geol. Bull., 72, 1360–1369Google Scholar
  31. Messing, C.G., Neumann, A.C., Lang, J.C. (1990): Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida. — Palaios, 5, 15–33CrossRefGoogle Scholar
  32. Mullins, H.T. (1981): Modern deep-water coral mounds north of Little Bahama Bank: criteria for recognition of deep-water coral bioherms in the rock record. — J. Sed. Petrol., 51, 999–1013Google Scholar
  33. Nelson, C.S. (1988): An introductory perspective on non-tropical shelf carbonates. — Sed. Geol., 60, 3–12CrossRefGoogle Scholar
  34. Nelson, C.S., Bornhold, B.D. (1983): Temperate skeletal carbonate sediments on Scott Shelf, northwestern Vancouver Island, Canada. — Marine Geol., 52, 241–266CrossRefGoogle Scholar
  35. Nelson, C.S., Keane, S.L., Head, P.S. (1988): Non-tropical carbonate deposits on the modern New Zealand shelf. — In: Nelson, C.S. (ed.): Non-tropical shelf carbonates — modern and ancient. — Sed. Geol., 60, 71–94.Google Scholar
  36. Neumann, A.C., Kofoed, J.W., Keller, G.H. (1977): Lithotherms in the Straits of Florida. — Geology, 5, 4–10CrossRefGoogle Scholar
  37. Rao, C.P. (1996): Modern carbonates, tropical, temperate, polar. Introduction to sedimentology and geochemistry. — 206 pp., Howrah (Univ. Tasmania)Google Scholar
  38. Rao, C.P. (1997): A colour illustrated guide to sedimentary textures, cold, cool, warm, hot; An introduction to the interpretation of depositional, diagenetic and hydrothermal temperatures. — 128 pp., Howrah, Tasmania (Rao, C.P.)Google Scholar
  39. Rao, C.P. (1999): Cold water polar aragonitic bivalve elemental composition, east Antarctica. — Carbonates and Evaporites, 14, 56–63CrossRefGoogle Scholar
  40. Schäfer, P., Henrich, R., Zankl, H., Bader, B. (1996): Carbonate production and depositional patterns of Bryomol-carbonates on deep shelf banks in mid and high northern latitudes. — Göttinger Arb. Geol. Paläont., Sonderband, 2, 101–110Google Scholar
  41. Scoffin, T.P., Bowes, G.E. (1988): The facies distribution of carbonate sediments on Porcupine Bank, northeast Atlantic. — In: Nelson, C.S. (ed.): Non-tropical shelf carbonates — modern and ancient. — Sed. Geol., 60, 125–134Google Scholar
  42. Smith, A.M. (1988): Preliminary steps toward formation of a generalized budget for cold-water carbonates. — In: Nelson, C.S. (ed.): Non-tropical shelf carbonates — modern and ancient. — Sed. Geol., 60, 323–331Google Scholar
  43. Smith, A.M., Nelson, C.S., Spencer, H.G. (1998): Skeletal carbonate mineralogy of New Zealand bryozoans. — Marine Geol., 151, 27–46CrossRefGoogle Scholar
  44. Teichert, C. (1958): Cold-and deep-water coral banks. — Bull. Amer. Ass. Petrol. Geol., 42, 1064–1082Google Scholar
  45. Walther, J. (1910): Die Sedimente der Taubenbank im Golf von Neapel. — Preuss. Akad. Wiss., phys.-math. Kl., Anhang Abh. 3, 1910, 49 pp.Google Scholar
  46. Further reading: K021, K210 (glacial carbonates)Google Scholar

Basics: Deep-marine carbonates

  1. Berger, W.H. (1991): Produktivität des Ozeans aus geologischer Sicht: Denkmodelle und Beispiele. — Zeitschrift der deutschen geologischen Gesellschaft, 142, 149–178Google Scholar
  2. Cook, E., Enos, P. (eds., 1977): Deep water carbonate environments. — Soc. Econ. Paleont. Min. Spec. Publ., 25, 336 pp.Google Scholar
  3. Cook, H.E., Hine, A.C., Mullins, H.T. (1983): Platform margin and deep water carbonates. — Soc. Econ. Paleont. Min. Short Course, 12, 563 pp.Google Scholar
  4. Cook, H.E., Mullins, H.T. (1983): Basin margin environment. — In: Scholle, P.A., Bebout, D.G., Moore, C.H.(eds.): Carbonate depositional environments. — Amer. Ass. Petrol. Geol. Mem., 33, 539–617Google Scholar
  5. Coniglio, M., Dix, G.R. (1992): Carbonates slopes. — In: Walker, R.G., James, N.P. (eds.): Facies models. Response to sea level change. — 349–373, Ottawa (Geol. Ass. Canada)Google Scholar
  6. Crevello, P.D., Harris, P.M. (1985): Deep water carbonates: buildups, turbidites, debris flows and chalks. — Soc. Econ. Paleont. Min. Core Workshop, 6, 527 pp.Google Scholar
  7. Doyle, L.J., Pilkey, O.H. (eds., 1979): Geology of continental slopes. — Soc. Econ. Paleont. Min. Spec. Publ., 27, 374 pp.Google Scholar
  8. Enos, P., Moore, C.H. (1983): Fore-reef slope environment. — In: Scholle, P.A., Bebout, D.G., Moore, C.H. (eds.): Carbonate depositional environments. — Amer. Ass. Petrol. Geol. Mem., 33, 507–537Google Scholar
  9. Hsü, K.J., Jenkyns, H.C. (eds., 1974): Pelagic sediments: on land and under the sea. — Spec. Publ. Int. Ass. Sedimentol., 1, 447 pp.Google Scholar
  10. Leggett, J.K. (1985): Deep-sea pelagic sediments and palaeooceanography: a review of recent progress. — In: Brenchley, P., Williams, B.P.J. (eds.): Sedimentology, recent developments and applied aspects. — 95–118, Oxford (Blackwell)Google Scholar
  11. Little C.T.S., Campbell, K.A., Herrington, R.J. (2002): Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today? Comment. — Int. J. Earth Sciences, 91, 149–153CrossRefGoogle Scholar
  12. Macilreath, I.A., James, N.P. (1979): Facies models. Carbonate slopes. — Geosci. Canada Reprint Ser., 5, 189–199Google Scholar
  13. Milliman, J.D., Droxler, A.W. (1996): Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. — Geol. Rundschau, 85, 496–504CrossRefGoogle Scholar
  14. Mullins, H.T. (1986): Periplatform carbonates. — Colorado School Mines Quart., 81, 63 pp.Google Scholar
  15. Mullins, H.T., Cook, H.E. (1986): Carbonate apron models: alternatives to the submarine fan model for paleoenvironmental analysis and hydrocarbon exploration. — Sed. Geol., 48, 37–79CrossRefGoogle Scholar
  16. Oxburgh, R., Broecker, WS. (1993): Pacific carbonate dissolution revisited. — Palaeogeogr., Palaeoclimat., Palaeo-ecol., 103, 31–39CrossRefGoogle Scholar
  17. Schlager, W, Chermak, A. (1979): Sediment facies of platform-basin transition, Tongue of the Ocean, Bahamas. — Soc. Econ. Paleont. Min. Spec. Publ., 27, 193–208Google Scholar
  18. Schlager, W, Camber, O. (1986): Submarine slope angles, drowning unconformities, an self-erosion of limestone escarpments. — Geology, 14, 762–765CrossRefGoogle Scholar
  19. Schlanger, S.O., Douglas, R.G. (1974): Pelagic ooze-chalk-limestone transition and its implications for marine stratigraphy. — Spec. Publ. Int. Ass. Sedimentol., 1, 117–148Google Scholar
  20. Shanmugam, G. (2000): 50 years of the turbidite paradigm (1950s–1990s): deep-water processes and facies models — a critical perspective. — Marine Petroleum Geol., 17, 285–342CrossRefGoogle Scholar
  21. Stow, D.A.V., Faugéres, J.C. (eds., 1998): Contourites, turbidites and process interaction. — Sed. Geol., 115, 1–386Google Scholar
  22. Westphal, H., Reijmer, J.J.G., Head, M.J. (1999): Sedimentary input and diagenesis on a carbonate slope (Bahamas): response to morphologic evolution of the carbonate platform and sea-level fluctuations. — In: Harris, P.M., Sailer, A.H., Simo, J.A.T. (eds.): Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models. — Soc. Econ. Paleont. Min. Spec. Publ., 63, 247–274Google Scholar
  23. Further reading: K022, K023, K024Google Scholar

Basics: Seep and vent carbonates

  1. Aharon, P. (2000): Microbial processes and products fueled by hydrocarbons at submarine seeps. — In: Riding, R.E., Awramik, S.M. (eds.): Microbial sediments. — 270–282, Berlin (Springer)CrossRefGoogle Scholar
  2. Beauchamp, B., von Bitter, P. (eds., 1992): Chemosynthesis: geological processes and products. — Palaios, 7, 337–484 (with papers on modern and ancient chemosynthetic carbonates)Google Scholar
  3. Callender, W.R., Powell, E.N. (1997): Autochthonous death assemblages from chemosynthetic communities at petroleum seeps: biomass, energy flow and implications for the fossil record. — Hist. Biology, 12, 165–198CrossRefGoogle Scholar
  4. Callender, R., Powell, E.N. (2000): Long-term history of chemoautotrophic clam-dominated faunas of petroleum seeps in the northwestern Gulf of Mexico. — Facies, 43, 177–204CrossRefGoogle Scholar
  5. Fisher, C.R. (1990): Chemoautotrophic and metanotrophic symbioses in marine invertebrates. — Reviews of Aquatic Sciences, 2, 399–436Google Scholar
  6. Hovland, M. (1990): Do carbonate reefs form due to fluid seepage? — Terra Nova, 2, 8–18CrossRefGoogle Scholar
  7. Little, C.T.S., Campbell, K.A., Herrington, R.J. (2002): Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today? Comment. — Int. J. Earth Sciences, 91, 149–153CrossRefGoogle Scholar
  8. Lutz, R.A., Kennish, M.J. (1993): Ecology of deep-sea hydrothermal vent communities: a review. — Reviews in Geophysics, 31, 211–242CrossRefGoogle Scholar
  9. Pauli, C.K., Chanton, J.P., Neumann, A.C., Coston, J.A., Martens, C.S. (1992): Indicators of Methane-derived carbonates and chemosynthetics organic carbon deposits: examples from the Florida escarpment. — Palaios, 7, 361–375CrossRefGoogle Scholar
  10. Peckmann, J., Reimer, A., Luth, U., Hansen, B.T., Heinicke, C., Hoefs, J., Reitner, J. (2001): Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. — Marine Geology, 177, 129–150CrossRefGoogle Scholar
  11. Roberts, H.H., Aharon, P., Walsh, M.M. (1993): Cold-seep carbonates of the Louisiana continental slope-to-basin floor. — In: Rezak, R., Lavoie, D.L. (eds.): Carbonate microfabrics. — 95–104, New York (Springer)CrossRefGoogle Scholar
  12. Stakes, D.S., Orange, D., Paduan, J.B., Salamy, K.A., Maher, N. (1999): Cold-seeps and authigenic carbonate formation in Monterey Bay, California. — Marine Geology, 159, 93–109CrossRefGoogle Scholar
  13. Tunnicliffe, V. (1991): The biology of hydrothermal vents. Ecology and evolution. — Oceanogr. mar. Biol. Ann. Rev., 29, 319–407Google Scholar
  14. Tunnicliffe, V. (1992): The nature and origin of the modern hydrothermal vent fauna. — Palaios, 7, 338–350CrossRefGoogle Scholar
  15. Venturini, S., Selmo, E., Tarlao, A., Tunis, G. (1998): Fossiliferous metanogenetic limestones in Eocene flysch of Istria (Croatia). — Giornale di Geologia, 60, 219–234Google Scholar
  16. Further reading: K211Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Erik Flügel
    • 1
  1. 1.Institute of PaleontologyErlangenGermany

Personalised recommendations