The Use of Protein—protein Interaction Networks for Genome Wide Protein Function Comparisons and Predictions

  • Christine Brun
  • Anaïs Baudot
  • Alain Guénoche
  • Bernard Jacq
Part of the Principles and Practice book series (PRINCIPLES)

Abstract

The concept of protein function is widely used by biologists. However, the means of the concept and its understanding can vary largely depending on the functional level under consideration (molecular, cellular, physiological, etc.) Function is therefore a complex notion and the development of efficient ways of representing function which can be computer-tractable is presently the goal of many research efforts. Moreover, genomic studies and new high-throughput methods of the post-genomic era provide the opportunity to shed a new light on the concept of protein function. Among them, the analysis of large protein—protein networks will permit the emergence of a more integrated view of protein function.

In this context, we have proposed a new method for protein function comparison and classification which, unlike usual methods based on sequence homology, permits the definition of functional classes of protein based solely on the identity of their interacting partners, thus giving access for the first time to function at the cellular level. This method, named PRODISTIN for Protein Distance based on Interactions, has been first applied to the Saccharomyces cerevisiae interactome (proteome-wide protein—protein interactions). An example of a classification/comparison is shown and discussed for a subset of S. cerevisiae proteins, accounting for 10% of its proteome (600 proteins). Functional classification trees have also been made for the Helicobacter pylori proteome, confirming the generic aspect of the method. We demonstrated that the method is robust (biologically and statistically) and can be used to predict function for unknown proteins and groups of proteins.

Finally, the potential use of protein—protein interaction data and of the PRODISTIN method in structural biology projects is presented and discussed. In the future, this method could also be potentially applied to other types of networks such as transcriptional and genetic networks.

Keywords

Carbohydrate Tyrosine Catalysis Adduct Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29Google Scholar
  2. 2.
    Blaschke C, Hirschman L, Valencia A (2002) Information extraction in molecular biology. Brief Bioinform 3: 154–165PubMedCrossRefGoogle Scholar
  3. 3.
    Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4:R22 122 Christine Brun et al.Google Scholar
  4. 4.
    Brun C, Guénoche A, Jacq B (2003) Approach of the functional evolution of duplicated genes in Saccharomyces cerevisiae using a new classification method based on protein-protein interaction data. Journal of Structural and Functional Genomics 3: 213–224PubMedCrossRefGoogle Scholar
  5. 5.
    Brun C, Wojcik J, Guénoche A, Jacq B (2002) Bioinformatic study of interaction networks: PRODISTIN, a new method for a functionnal classification of proteins. In: Nicolas J, Thermes C (eds) Journées Ouvertes Biologie Informatique Mathématiques (JOBIM’2002). Saint Malo, France, p 171–182Google Scholar
  6. 6.
    Chakrabarti P, Janin J (2002) Dissecting protein-protein recognition sites. Proteins 47: 334–343PubMedCrossRefGoogle Scholar
  7. 7.
    Costanzo MC, Crawford ME, Hirschman JE, Kranz JE, Olsen P, Robertson LS, Skrzypek MS, Braun BR, Hopkins KL, Kondu P, Lengieza C, Lew-Smith JE, Tillberg M, Garrels JI (2001) YPD, Pombe PD and Worm PD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res 29: 75–79Google Scholar
  8. 8.
    Dandekar T, Snel B, Huynen M, Bork P (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23: 324–328PubMedCrossRefGoogle Scholar
  9. 9.
    de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9: 67–103PubMedCrossRefGoogle Scholar
  10. 10.
    Devos D, Valencia A (2000) Practical limits of function prediction. Proteins 41: 98–107PubMedCrossRefGoogle Scholar
  11. 11.
    Drewes G, Bouwmeester T (2003) Global approaches to protein-protein interactions. Curr Opin Cell Biol 15: 199–205PubMedCrossRefGoogle Scholar
  12. 12.
    Elion EA (2001) The Ste5p scaffold. J Cell Sci 114: 3967–3978PubMedGoogle Scholar
  13. 13.
    Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402: 86–90PubMedCrossRefGoogle Scholar
  14. 14.
    Enright AJ, Ouzounis CA (2001) BioLayout-an automatic graph layout algorithm for similarity visualization. Bioinformatics 17: 853–854PubMedCrossRefGoogle Scholar
  15. 15.
    Galperin MY, Koonin EV (2000) Who’s your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18: 609–613PubMedCrossRefGoogle Scholar
  16. 16.
    Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141–147PubMedCrossRefGoogle Scholar
  17. 17.
    Geissler S, Siegers K, Schiebel E (1998) A novel protein complex promoting formation of functional alpha-and gamma-tubulin. Embo J 17: 952–966PubMedCrossRefGoogle Scholar
  18. 18.
    Hannon GJ (2002) RNA interference. Nature 418: 244–251PubMedCrossRefGoogle Scholar
  19. 19.
    Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415: 180–183PubMedCrossRefGoogle Scholar
  20. 20.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98: 4569–4574PubMedCrossRefGoogle Scholar
  21. 21.
    Jacq B (2001) Protein function from the perspective of molecular interactions and genetic networks. Brief Bioinform 2: 38–50PubMedCrossRefGoogle Scholar
  22. 22.
    Karp PD (2000) An ontology for biological function based on molecular interactions. Bioinformatics 16: 269–285PubMedCrossRefGoogle Scholar
  23. 23.
    Karp PD, Riley M, Paley SM, Pellegrini-Toole A, Krummenacker M (1999) Eco Cyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 27: 55–58PubMedCrossRefGoogle Scholar
  24. 24.
    Kolchanov NA, Nedosekina EA, Ananko EA, Likhoshvai VA, Podkolodny NL, Ratushny AV, Stepanenko IL, Podkolodnaya OA, Ignatieva EV, Matushkin YG (2002) GeneNet database: description and modeling of gene networks. In Silico Biol 2: 97–110Google Scholar
  25. 25.
    Lan N, Montelione GT, Gerstein M (2003) Ontologies for proteomics: towards a systematic definition of structure and function that scales to the genome level. Curr Opin Chem Biol 7: 44–54PubMedCrossRefGoogle Scholar
  26. 26.
    Legrain P, Wojcik J, Gauthier JM (2001) Protein-protein interaction maps: a lead towards cellular functions. Trends Genet 17: 346–352PubMedCrossRefGoogle Scholar
  27. 27.
    Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285: 751–753PubMedCrossRefGoogle Scholar
  28. 28.
    Marcotte EM, Pellegrini M, Thompson MJ,Yeates TO, Eisenberg D (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402: 83–86Google Scholar
  29. 29.
    Mewes HW, Frishman D, Guldener U, Mannhaupt G, Mayer K, Mokrejs M, Morgenstern B, Munsterkotter M, Rudd S, Weil B (2002) MIPS: a database for genomes and protein sequences. Nucleic Acids Res 30: 31–34PubMedCrossRefGoogle Scholar
  30. 30.
    Overbeek R, Fonstein M, D’Souza M, Pusch GD, Maltsev N (1999) The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96: 2896–2901PubMedCrossRefGoogle Scholar
  31. 31.
    Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96: 4285–4288PubMedCrossRefGoogle Scholar
  32. 32.
    Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24: 218–229PubMedCrossRefGoogle Scholar
  33. 33.
    Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S, Lenzen G, Petel F, Wojcik J, Schachter V, Chemama Y, Labigne A, Legrain P (2001) The protein-protein interaction map of Helicobacter pylori. Nature 409: 211–215PubMedCrossRefGoogle Scholar
  34. 34.
    Sanchez C, Lachaize C, Janody F, Bellon B, Roder L, Euzenat J, Rechenmann F, Jacq B (1999) Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res 27: 89–94PubMedCrossRefGoogle Scholar
  35. 35.
    Schachter V (2002) Protein-interaction networks: from experiments to analysis. Drug Discov Today 7: S48–54PubMedCrossRefGoogle Scholar
  36. 36.
    Shi Y (2003) Mammalian RNAi for the masses. Trends Genet 19: 9–12PubMedCrossRefGoogle Scholar
  37. 37.
    Smith GR, Sternberg MJ (2002) Prediction of protein-protein interactions by docking methods. Curr Opin Struct Biol 12: 28–35PubMedCrossRefGoogle Scholar
  38. 38.
    Sprinzak E, Margalit H (2001) Correlated sequence-signatures as markers of protein-protein interaction. J Mol Biol 311: 681–692PubMedCrossRefGoogle Scholar
  39. 39.
    Sprinzak E, Sattath S, Margalit H (2003) How Reliable are Experimental Protein-protein Interaction Data? J Mol Biol 327: 919–923PubMedCrossRefGoogle Scholar
  40. 40.
    Tamames J, Casari G, Ouzounis C, Valencia A (1997) Conserved clusters of functionally related genes in two bacterial genomes. J Mol Evol 44: 66–73PubMedCrossRefGoogle Scholar
  41. 41.
    Tedford K, Kim S, Sa D, Stevens K, Tyers M (1997) Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol 7: 228–238PubMedCrossRefGoogle Scholar
  42. 42.
    Tyers M, Mann M (2003) From genomics to proteomics. Nature 422: 193–197PubMedCrossRefGoogle Scholar
  43. 43.
    Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403: 623–627PubMedCrossRefGoogle Scholar
  44. 44.
    von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417: 399–403CrossRefGoogle Scholar
  45. 45.
    Wu C, Leberer E, Thomas DY, Whiteway M (1999) Functional characterization of the interaction of Ste50p with Stellp MAPKKK in Saccharomyces cerevisiae. Mol Biol Cell 10: 2425–2440PubMedGoogle Scholar
  46. 46.
    Xu BE, Skowronek KR, Kurjan J (2001) The N terminus of Saccharomyces cerevisiae Sst2p plays an RGS-domain-independent, Mpt5p-dependent role in recovery from pheromone arrest. Genetics 159: 1559–1571Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christine Brun
  • Anaïs Baudot
  • Alain Guénoche
  • Bernard Jacq

There are no affiliations available

Personalised recommendations