Advertisement

Membranen — Strukturen, Werkstoffe und Herstellung

  • Thomas Melin
  • Robert Rautenbach
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Ingenieuren, die an der Auslegung eines Membranprozesses arbeiten, steht ein etablierter Markt mit sehr breitem Angebot an selektiven und beständigen Membranen einer Vielzahl spezialisierter Anbieter zur Verfügung. Das Umsatzvolumen von Membranen und Module überstieg im Jahr 2000 5 Milliarden €. Es sind jährliche Zuwachsraten von 8–12% zu erwarten [17].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alberts B (2002) Molecular biology of the cell. 4. Aufl, Garland Science, New YorkGoogle Scholar
  2. 2.
    Atkins PW (2002) Physkalische Chemie. 3. Aufl, Wiley/VCH, WeinheimGoogle Scholar
  3. 3.
    Bergmann W (2001) Werkstofftechnik, Teil I: Grundlagen. 4. Aufl, Carl Hanser Verlag, München, WienGoogle Scholar
  4. 4.
    Bhave RR (1991) Inorganic membranes - Synthesis, characteristics and applications. Van Nostrand Reinhold, New YorkGoogle Scholar
  5. 5.
    Blume I, Schwering PJF, Mulder MHV, Smolders CA (1991) Vapour sorption and permeation properties of poly(dimethylsiloxane) films. Journal of membrane science, 61: 85CrossRefGoogle Scholar
  6. 6.
    Boyadzhiev L, Lazarova Z (1995) Liquid membranes (liquid pertraction). In: Noble RD, Stern SA (Hrsg) Membrane separation processes, Separations technology - principles and applications. Membrane science and technology series 2, Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Breck DW (1974) Zeolite molecular sieves: structure, chemistry, and use, Wiley, New YorkGoogle Scholar
  8. 8.
    Burggraaf AJ, Cot L (1996) Fundamentals of Inorganic Membrane Science and Technology. Elsevier, AmsterdamGoogle Scholar
  9. 9.
    Buschatz H, Dageförde B, Jakoby K, Peinemann KV, Paul D (2001) Hochselektive Stofftrennung mit Carriermembranen — Stand der Entwicklung und Erwartungen. Chemie Ingenieur Technik 73: 297–303CrossRefGoogle Scholar
  10. 10.
    Cadotte, JE (1981) Interfacially synthesized reverse osmosis membrane, US Patent 4,277, 344Google Scholar
  11. 11.
    Caro J, Noack M, Kölsch P, Schäfer R (2000) Zeolite membranes - state of their development and perspectives. Microporous and mesoporous materials, 38 (1): 3CrossRefGoogle Scholar
  12. 12.
    Centeno TA, Fuertes AB (1999) Supported carbon molecular sieve membranes based on a phenolic resin, Journal of membrane science 160: 201CrossRefGoogle Scholar
  13. 13.
    Cussler EL, Aris R, Bhown A (1989) On the limits of facilitated diffusion, Journal of membrane science 43: 149CrossRefGoogle Scholar
  14. 14.
    Elias HG (1997) An introduction to polymer science. 1. Aufl., VCH, Weinheim, New York, Basel, Cambridge, TokyoGoogle Scholar
  15. 15.
    Ellinghorst G, Niemöller A, Scholz H, Scholz M, Steinhauser H (1987) Membranes for pervaporation by radiation grafting and curing by plasma processing. Proceedings of the 2nd International Conference on Pervaporation Processes in the Chemical IndustryGoogle Scholar
  16. 16.
    Eriksen 01, Vik 1B, Dahl IM (1997) Separation of ethene from ethane with permeators based on silver ion-exchanged nafion hollow fibers. Polymeric materials science and engineering 77: 265Google Scholar
  17. 17.
    Fischer K, Kragl U, Ondruschka B (2001) Technische Chemie 2000, Katalyse und (Mikro-)Reaktoren; Brennstoffzellen, ionische Flüssigkeiten und nichtklassische Energieformen. Nachrichten aus der Chemie 49: 374Google Scholar
  18. 18.
    Gavalas GR, Megiris CE, Nam SW (1989) Deposition of H2-permselective SiO2 films. Chemical engineering science 44 (9): 1829CrossRefGoogle Scholar
  19. 19.
    Hofmann D, Fritz L, Ulbrich J, Schepers C, Böhning M (2000) Detailed atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials. Macromolecular Theory and Simulations 9: 293CrossRefGoogle Scholar
  20. 20.
    Hörpel G, Hying C, Kuppinger, FF (2001) Keramische Membranfolien vereinigen die Vorteile von polymeren und keramischen Membranen. Preprints des Aachener Membran Kolloquium (27.-29.3.2001), AachenGoogle Scholar
  21. 21.
  22. 22.
    http://www.corning.com/lightingmaterials/images/porous.pdf
  23. 23.
    http://www.mempro.com/m213td.html. Aus: General Electric permselective membranes (1982) Membrane products operation, Medical systems business operations
  24. 24.
  25. 25.
    frusta S, Pina MP, Menendez M, Santamaria J (1998) Development and application of perovskite-based catalytic membrane reactors. Catalysis Letters 54: 69CrossRefGoogle Scholar
  26. 26.
    Ismail AF, David LIB (2001) A Review on the Latest Development of Carbon Membranes for Gas Separation. Journal of membrane science 193: 1–18CrossRefGoogle Scholar
  27. 27.
    Itoh N, Kato T, Uchida K, Haraya K (1994) Preparation of pore-free disk of Lail_ x)SrxCoO3 mixed conductor and its oxygen permeability. Journal of membrane science 92: 239CrossRefGoogle Scholar
  28. 28.
    Jayaraman V, Lin YS, Pakala M, Lin RY (1995) Fabrication of ultrathin metallic membranes on ceramic supports by sputter deposition. Journal of membrane science 99: 89CrossRefGoogle Scholar
  29. 29.
    Kaiser V, Stropnik C (2000) Membranes from polysulfone/N,N-Dimethylacetamide/water system; structure and water Flux. Acta Chimica Slovenica 47: 205Google Scholar
  30. 30.
    Li S, Jin W, Gu X, Xu N, Shi J, Ma YH (2000) Tubular La06Sr04Co02Fe08O3_5 perovskite-type membranes: preparation, oxygen permeation and partial oxidation of methane to syngas. 4th International Conference on Catalysis in Membrane Reactors, Proceedings, ZaragozaGoogle Scholar
  31. 31.
    Li S, Jin W, Huang P, Xu N, Shi J, Lin YS, Hu MZC, Payzant EA (1999) Comparison of oxygen permeability and stability of perovskite type Lao 2A08Coo2FeO3_s (A = Sr, Ba, Ca) membranes. Industrial and engineering chemistry research 38: 2963Google Scholar
  32. 32.
    Lin X, Falconer JL, Noble RD (1998) Parallel pathways for transport in ZSM-5 zeolite membranes. Chemistry of materials 10: 3716CrossRefGoogle Scholar
  33. 33.
    Loeb S, Sourirajan S (1963) Sea water demineralization by means of an osmotic membrane. Advances in chemistry series 38: 117CrossRefGoogle Scholar
  34. 34.
    Loeb S, Sourirajan S (1964) High flow porous membranes for separation of water from saline solutions. US Patent 3,133, 132Google Scholar
  35. 35.
    Madigan MM (2002) Brock Biology of Microorganisms. 10. Aufl, Prentice Hall, New JerseyGoogle Scholar
  36. 36.
    Mahajan R, Koros WJ (2000) Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials. Industrial and engineering chemistry research 39 (8): 2692CrossRefGoogle Scholar
  37. 37.
    Mahajan R, Vu DQ, Koros WJ (2002) Mixed Matrix Membrane Materials: An Answer to the Challenges Faced by Membrane Based Gas Separations Today? Journal-Chinese institute of chemical engineers 33 (1): 77Google Scholar
  38. 38.
    Mähr U (2001) Herstellung von Porenmembranen aus Polyacrylsäure-Dispersionen mit einstellbaren Stofftransporteigenschaften. Dissertation, BerlinGoogle Scholar
  39. 39.
    Maisterrena B, Couturier R, Perrin B (2002) Artificial biomimetic membranes for the active and selective transport of small molecules. Enzyme and microbial technology 30: 125CrossRefGoogle Scholar
  40. 40.
    Menges G (2002) Werkstoffkunde Kunststoffe. 5. Aufl., Carl Hanser Verlag, München, WienGoogle Scholar
  41. 41.
    Medved M, Wasserscheid P, Melin T (2001) Facilitated transport using ionic liquids supported in pure alumina membranes. 28th Conference SSCHE, Proceedings on CD ROM, T Matliare, SlowakeiGoogle Scholar
  42. 42.
    Morgenstern J (2001) “Carbon Membranes a Negev Nuclear Research Center Commercial Spin Off Set for Major Business Inroads. Israel High-Tech Investment Report, Vol. XVII(8)Google Scholar
  43. 43.
    Morooka S, Yan S, Yokoyama S, Kusakabe K (1995) Palladium membrane formed in macropores of support tube by chemical vapor deposition with crossflow through a porous wall, Separation science and technology, 30 (14): 2877CrossRefGoogle Scholar
  44. 44.
    Mulder M (1998) Basic Principles of Membrane Technology. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  45. 45.
    Müller-Plathe F (1994) Polymer Permeation - A Computational Approach. Acta Polymerica (Review Article) 45: 259CrossRefGoogle Scholar
  46. 46.
    Noack M, Kölsch P, Schäfer R (2002) Gastrennung an mikroporösen anorganischen Membranen. Vortrag im Rahmen „Trends in der Membrantechnik — Gastrennung mit Membranverfahren“ (29./30.04. 2002 ). FhG-IGB, StuttgartGoogle Scholar
  47. 47.
    Noble RD, Coval CA, Pellegrino JJ (1989) Facilitated transport membrane systems, Chemical engineering progress, 85 (3): 58Google Scholar
  48. 48.
    Nunes SP, Peinemann KV (2001) Membrane Technology in the Chemical Industry, Wiley/VCH, WeinheimCrossRefGoogle Scholar
  49. 49.
    Pez GP, Carlin RT, Laciak DV, Sorensen C (1988) Method for gas separation, US Pat. 4761164Google Scholar
  50. 50.
    Raab T, Samhaber WM (2001) Separation performance of commertial and plasma modified membranes under high operating pressures. 3rd ECCE Proceedings, NürenbergGoogle Scholar
  51. 51.
    Poschmann T (2000) Metallmembranen zur Wasserstoffseparation in Brennstoffzellensystemen für mobile Anwendungen. Dissertation, RWTH AachenGoogle Scholar
  52. 52.
    Roland E, Kleinschmit P (2001) Zeolites. In Ullmann’s Encyclopedia of industrial chemistry, 6. Aufl (CD-ROM)Google Scholar
  53. 53.
    Saracco G, Neomagus HWJP, Versteeg GF, van Swaaij WPM (1999) High-temperature membrane reactors: potential and problems. Chemical engineering science 54 (13–14): 1997CrossRefGoogle Scholar
  54. 54.
    Scott K (1998) Handbook of industrial membranes. 2. Aufl, Elsevier, OxfordGoogle Scholar
  55. 55.
    Sirkar KK, Shanbhag PV, Kovvali S (1999) Membrane in a reactor: a functional perspective. Industrial and engineering chemistry research 38: 3715CrossRefGoogle Scholar
  56. 56.
    Staude E (1992) Membranen und Membranprozesse. VCH Verlag WeinheimGoogle Scholar
  57. 57.
    Toshima N (1992) Polymers for Gas Separation, 1. Aufl, VCH, New YorkGoogle Scholar
  58. 58.
    Venkataraman VK, Guthrie HD, Avellanet RA, Driscoll DJ (1998) Overview of U.S. DOE’s Natural Gas-to-Liquids RDandD Program and Commercialization Strategy. Studies in surface science and catalysis 119: 913–918Google Scholar
  59. 59.
    Vlugt TJH (2000) Adsorption and diffusion in zeolites: A computational study. Disertation, Universität AmsterdamGoogle Scholar
  60. 60.
    Voet D (2002) Biochemistry. 3. Aufl, Wiley, New YorkGoogle Scholar
  61. 61.
    Vu DQ, Koros JK, Miller SJ (2002) High Pressure CO2/CH4 Separation Using Carbon Molecular Sieve Hollow Fibre Membranes. Industrial and engineering chemistry research 41: 367–380CrossRefGoogle Scholar
  62. 62.
    Walker DRB, Koros WJ (1991) Transport characterization of a polypyrrolone for gas separations. Journal of membrane science 55: 99CrossRefGoogle Scholar
  63. 63.
    Wasserscheid P, Keim W (2000) Ionic liquids - new “solutions” for transition metal catalysis. Angewandte Chemie (International Edition) 39: 3772Google Scholar
  64. 64.
    Wesselingh JA, Krishna R (2000) Mass transfer in multicomponent mixtures. 1. Aufl., Delft University PressGoogle Scholar
  65. 65.
    Wijmans JG, Baker RW (1995) The solution-diffusion modell: a review. Journal of membrane science 107: 1CrossRefGoogle Scholar
  66. 66.
    Zeng Y, Lin YS, Swartz SL (1998) Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. Journal of membrane science 150: 87CrossRefGoogle Scholar
  67. 67.
    Zimmerman CM, Singh A, Koros WJ (1997) Tailoring mixed matrix composite membranes for gas separations. Journal of membrane science 137: 145CrossRefGoogle Scholar
  68. 68.
    Zsigmondy R, Bachmann W (1918) Über neue Filter. Zeitschrift für Anorganische und Allgemene Chemie 103: 119CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Thomas Melin
    • 1
  • Robert Rautenbach
  1. 1.Institut für VerfahrenstechnikRWTH AachenAachenDeutschland

Personalised recommendations