Positronenemissionstomographie (PET)

  • Y. Hämisch

Zusammenfassung

Die Positronenemissionstomographie (PET) ist ein bildgebendes medizinisches Verfahren mit einzigartigen Möglichkeiten, die biochemische Funktion von Zellen, Organen und Organismen in vivo zu untersuchen. Es wird gegenwärtig vor allem zur funktionalen Darstellung von Stoffwechselprozessen in Gehirn und Herz sowie zur Tumordiagnostik und Therapiekontrolle eingesetzt. Neben der Untersuchung des Stoffwechsels sind aber besonders auch Fragen der Pharmakokinetik, der Untersuchung von Nervensignalsubstanzen (Neurorezeptoren und -transmittern) in Gehirn und Herz sowie Durchblutungsuntersuchungen in Korrelation zu Stoffwechselvorgängen Gegenstand der PET.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  1. Armbrecht JJ, Schelbert HR (1989) Myokardischämie und klinische Anwendung der Positronenemissionstomographie. Der Nuklearmediziner 12: 93–107Google Scholar
  2. Bergmann H (1992) Radioactive isotopes in clinical medicine and research. Urban und Schwarzenberg, München WienGoogle Scholar
  3. Bergström M, Muhr C, Lundberg PO, Langström B (1991) PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 32: 610–615PubMedGoogle Scholar
  4. Berry JB, Schwaiger M (1990) Metabolic imaging with positron emission tomography. Curr Opin Cardiol 5: 803–812PubMedCrossRefGoogle Scholar
  5. Brownell GL, Kairento AL, Swartz M, Elmaleh DR (1985) Positron emission tomography in oncology — The Massachusetts General Hospital experience. Semin Nucl Med 15: 201–209PubMedCrossRefGoogle Scholar
  6. Brownell GL, Sweet WH (1953) Localization of brain tumors with positron emitters. Nucleonics 11: 40Google Scholar
  7. Büll U (1990) PET and SPECT to achieve diagnostic impact. Nucl Med 29: 113–118Google Scholar
  8. Coleman RE (1993) Clinical PET: A technology on the brink. J Nucl Med 34: 2269–2271PubMedGoogle Scholar
  9. Coleman RE, Robbins MS, Siegel BA (1992) The future of positron emission tomography in clinical medicine and the impact of drug regulation. Semin Nucl Med 22: 193–201PubMedCrossRefGoogle Scholar
  10. Dahlbom M, Hoffmann EJ, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, Phelps ME (1992) Whole body positron emission tomography. Part I: Methods and performance characteristics. J Nucl Med 33: 1191–1199PubMedGoogle Scholar
  11. Ebert D, Feistel H, Barocka A (1991) SPECT und PET in psychiatrischer Forschung und Klinik. Ein kritischer Überblick. Nervenheilkunde 10: 183–187Google Scholar
  12. Ell PJ (1992) Challenges for nuclear medicine in the 1990s. Nucl Med Comm 13: 65–75Google Scholar
  13. Evens RG, Siegel BA, Welch MJ (1983) Cost analysis of positron emission tomography for clinical use. Am J Roentgenol 141: 1073–1076CrossRefGoogle Scholar
  14. Faulkner DB, Kearfott KJ, Manning RG (1991) Planning a clinical PET-center. J Nucl Med Technol 19: 5–19Google Scholar
  15. Freeman LM, Blaufox MD (1992) Positron Emission Tomography: Part II. Semin Nucl Med 22: 210–302CrossRefGoogle Scholar
  16. Gould KL (1989) Goals, gold standards and accuracy of noninvasive myocardial perfusion imaging for identifying and assessing severity of coronary artery disease. Curr Opin Cardiol 4: 834–844CrossRefGoogle Scholar
  17. Guzzardi R (1992) Results of a multinational (1988–1991) European program on PET instrumentation. Eur J Nucl Med 19: 558PubMedGoogle Scholar
  18. Haberkorn U, Strauss LG, Dimitrakopoulou A et al. (1991) Flour-18-Deoxyglukose (FDG) Uptake. Ein Parameter fur die Proliferation maligner Tumoren. Nucl Med 30: A14Google Scholar
  19. Hamacher K, Blessing G, Nebeling B (1990) Computer aided synthesis (CAS) of no-carrier-added 2- (18-F) Flouro-2-deoxy-D-glucose: an efficient automated system for the ami-nopolyether-supported nucleophilic flourination. Appl Radiat Isot 41: 49–55CrossRefGoogle Scholar
  20. Hawkins RA et al. (1992) The role of positron emission tomography in oncology and other whole body applications. Semin Nucl Med 22: 268–284PubMedCrossRefGoogle Scholar
  21. Heiss WD, Herholz K, Pawlik G, Szelies B (1988) Beitrag der Positronen-Emissions-Tomographie zur Diagnose der Demenz. Dtsch Med Wschr 113: 1362–1367PubMedCrossRefGoogle Scholar
  22. Heiss WD, Phelps ME (1983) Positron emission tomography of the brain. Springer, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  23. Herzog H, Feinendegen LE (1988/89) Anwendungen der Positronen-Emissions-Tomographie. Jahresbericht 1988/89 der Kernforschungsanlage Jülich GmbHGoogle Scholar
  24. Höfer R, Bergmann H, Sinzinger H (1991) Radioactive isotopes in clinical medicine and research. FK Schattauer, StuttgartGoogle Scholar
  25. Hör G (1992) Positronen-Emissions-Tomographie (Von der Forschung zur Klinik). Dtsch Ärztebl 25/26: 1883–1889Google Scholar
  26. Huebner KF (1990) PET imaging in neurology. J Nucl Med Technol 4: 229–234Google Scholar
  27. Jordan K, Knoop B (1988) Cardiac nuclear medicine tomographic systems. Eur J Nucl Med 30: 1589–1606Google Scholar
  28. Kessler RM, Partain CL, Price RR, James AE Jr (1987) Positron emission tomography: Prospects for clinical utility. Invest Radiol 22: 529–537PubMedCrossRefGoogle Scholar
  29. Kuhl DE, Edwards RW (1963) Image separation radioisotope scanning. Radiology 80: 653–661Google Scholar
  30. Mankoff DA, Muehllehner G, Miles GE (1990) A local coincidence triggering system for PET tomographs composed of large area position sensitive detectors. IEEE Transact Nucl Sci 37: 730–736CrossRefGoogle Scholar
  31. McGivney WT (1991) Hurdles to technology diffusion: What are expectations for PET? J Nucl Med 32: 660–664PubMedGoogle Scholar
  32. Pabst HW, Adam WE, Ell P, Hör G, Kriegel H (eds) (1992) Assessment of myocardial metabolism in vivo with positron emission tomography. G Fischer, StuttgartGoogle Scholar
  33. Phelps ME (1977) Emission computed tomography. Semin Nucl Med 7: 337–365PubMedCrossRefGoogle Scholar
  34. Phelps ME (1981) Positron computed tomography studies of cerebral glucose metabolism in man: Theory and application in nuclear medicine. Semin Nucl Med 11: 32–49PubMedCrossRefGoogle Scholar
  35. Prezio JA, Ackerhalt RE (1992) Positron emission tomography as a multi-institutional effort. Semin Nucl Med 22: 189–192PubMedCrossRefGoogle Scholar
  36. Schelbert HR (1986) Features of positron emission tomography as a probe for myocardial chemistry. Eur J Nucl Med 29: 2–10CrossRefGoogle Scholar
  37. Schelbert HR (1989) Myocardial ischemia and clinical applications of positron emission tomography. Am J Cardiol 64: 46E-53ECrossRefGoogle Scholar
  38. Schober O, Meyer GJ, Hundeshagen H (1987) PET — Diagnostischer Zugewinn im Vergleich zu SPECT. Nucl Med 26: 111–113Google Scholar
  39. Schön HR, Schelbert HR, Phelps ME (1983) Positronen-Computertomographie: eine neue Methode zur quantitativen Bestimmung von Stoffwechsel, Durchblutung und Funktion des Herzens — I. Technische und experimentelle Grundlagen. Nucl Med 22: 171Google Scholar
  40. Schwaiger M, Hutchins G (1992) Evaluation of coronary artery disease with positron emission tomography. Semin Nucl Med 22: 210–223PubMedCrossRefGoogle Scholar
  41. Schwaiger M, Kalff V, Rosenspire K, Haka MS (1990) Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 82: 457–464PubMedCrossRefGoogle Scholar
  42. Schwaiger M, Muzik O (1991) Assesment of myocardial perfusion by positron emission tomography. Am J Cardiol 67: 35D-43DCrossRefGoogle Scholar
  43. SNM Task Force on Clinical PET A: Positron emission tomography: Clinical status in the United States in 1987. J Nucl Med 29: 1136–1143Google Scholar
  44. Stöcklin G (1992) Tracers for metabolic imaging of brain and heart. Eur J Nucl Med 19: 527–551PubMedCrossRefGoogle Scholar
  45. Strauss HW (1991) Clinical PET: Its time has come. J Nucl Med 32: 561–751Google Scholar
  46. Strauss LG, Conti PS (1991) The applications of PET in clinical oncology. J Nucl Med 32: 632–648Google Scholar
  47. Ter-Pogossian MM: The origins of positron emission tomography. Semin Nucl Med 22: 140–149Google Scholar
  48. Ter-Pogossian MM et al. (1975) A positron emission transaxial tomograph for nuclear imaging (PET). Radiology 114: 89–98PubMedGoogle Scholar
  49. Wagner HN Jr (1986) Clinical PET opens gates to in vivo biochemistry. Diagn Imag Internat Sept: 22–30Google Scholar
  50. Wagner HN Jr (1988) Positron emission tomography and the chemistry of mental illness In: Hofer PB (ed) The year book of nuclear medicine 1988. Year Book Med, ChicagoGoogle Scholar
  51. Wagner HN Jr, Conti PS (1991) Advances in medical imaging for cancer diagnosis and treatment. Cancer 67: 1121–1128PubMedCrossRefGoogle Scholar
  52. Wagner HN Jr (1992) Positron emission tomography at the turn of the century: A perspective. Semin Nucl Med 22: 285–288PubMedCrossRefGoogle Scholar
  53. Warburg O (1931) The metabolism of tumors. Smith, New YorkGoogle Scholar
  54. Wienhard K, Eriksson L, Grootoonk S, Casey M (1992) Performance evaluation of a new generation PET. J Nucl Med 33: 861Google Scholar
  55. Wienhard K, Wagner R, Heiss WD (1989) PET — Grundlagen und Anwendungen der Positronen-Emissions-Tomographie. Springer, Berlin Heidelberg New York TokyoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Y. Hämisch

There are no affiliations available

Personalised recommendations