Advertisement

Cephalocereus senilis (Old-Man-Cactus): In Vitro Culture and the Elicitation of Flavonoids

  • P. W. Paré
  • Q. Liu
  • M. S. Bonness
  • M. Liu
  • R. A. Dixon
  • T. J. Mabry
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 37)

Abstract

The abundance of cacti in arid lands is, at least in part, due to several biochemical and anatomical adaptations that cacti have for minimizing water loss. To what degree members of the Cactaceae have evolved defenses against microbial attack or insect feeding is not as well studied. In this chapter we will examine how one biosynthetic pathway, the route leading to flavonoid synthesis, responds to conditions which simulate bacterial infection. The chemical and biochemical studies have focused on a popular ornamental species, Cephalocereus senilis (old-man-cactus; Fig. 1A)

Keywords

Cinnamic Acid Crassulacean Acid Metabolism Crassulacean Acid Metabolism Plant Minimize Water Loss Suspension Culture System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barcikowski W, Nobel PS (1984) Water relations of cacti during desiccation: distribution of water in tissue. Bot Gaz 145: 110–115CrossRefGoogle Scholar
  2. Bonness MS, Paré PW, Mabry TJ (1992) Novel callus and suspension cultures of Cephalocereus senilis (old-man-cactus). Cactus Succulent J 65: 144–147Google Scholar
  3. Britton NS, Rose JN (1963) The Cactaceae. Dover, New YorkGoogle Scholar
  4. Clark WD, Brown GK, Mays RL (1980) Flower flavonoids of Opuntia series Opuntiae. Phytochemistry 19: 1856–1857CrossRefGoogle Scholar
  5. Escobar HA, Villalobos VM, Villegas A (1986) Opuntia micropropagation by axillary proliferation. Plant Cell Tissue Organ Cult 7: 269–277Google Scholar
  6. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge, MA Grand C, Boudet A, Boudet AM (1983) Isoenzymes of hydroxycinnamate: CoA ligase from poplar stems: properties and tissue distribution. Planta 158: 225–229Google Scholar
  7. Hain R, Reif HJ, Krause E, Landebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156PubMedCrossRefGoogle Scholar
  8. Hamburger MO, Cordell GA (1987) A direct bioautographic TLC assay for compounds possessing antibacterial activity. J Nat Prod 50: 19–25PubMedCrossRefGoogle Scholar
  9. Harborne JB (1988) An introduction to ecological biochemistry. Academic Press, London Heinzmann U, Seitz U, Seitz U (1977) Purification and substrate specificities of hydroxycinnamate:Google Scholar
  10. CoA ligase from anthocyanin-containing and anthocyanin-free carrot cells. Planta 135: 313–318Google Scholar
  11. Heller W, Forkmann, G. (1988) Biosynthesis. In: Harborne JB (ed) The Flavonoids: advances in research since 1980. Chapman and Hall, New York, pp 399–425Google Scholar
  12. Hubstenberger JF, Clayton PW, Phillips GC (1992) Micropropagation of cacti (Cactaceae). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 20. High-tech and micropropagation IV. Springer, Berlin Heidelberg New York, pp 49–68Google Scholar
  13. Innes C (1987) Cacti. The Royal Horticultural Society. Wing King Tong Co, Hong KongGoogle Scholar
  14. Kutsuki H, Shimada M, Higuchi T (1982) Distribution and roles of p-hydroxycinnamate:CoA ligase in lignin biosynthesis. Phytochemistry 21: 267–271CrossRefGoogle Scholar
  15. Liu Q, Markham KR, Paré PW, Dixon RA, Mabry TJ (1993a) Flavonoids from elicitor-treated cell suspension cultures of Cephalocereus senilis. Phytochemistry 32: 144–147Google Scholar
  16. Liu Q, Dixon RA, Mabry TJ (1993b) Additional flavonoids from elicitor-treated cell cultures of Cephalocereus senilis. Phytochemistry 34: 167–170CrossRefGoogle Scholar
  17. Liu Q, Liu M, Mabry TJ, Dixon RA (1994) Flavonol glycosides from Cephalocereus senilis. Phytochemistry 36: 229–231PubMedCrossRefGoogle Scholar
  18. Liu Q, Bonness MS, Liu M, Seradge E, Dixon RA, Mabry TJ (1995) Enzymes of flavonoid biosynthesis in elicited cell cultures of “old man” cactus (Cephalocereus senilis) (in preparation)Google Scholar
  19. Mabry TJ, Nguyen HT, Dixon RA, Bonness MS (1993) Biotechnology for aridland plants. IC2 Institute, AustinGoogle Scholar
  20. Mann J (1987) Secondary metabolism. Clarendon Press, Oxford, 276 ppGoogle Scholar
  21. Maule AJ, Ride JP (1983) Cinnamate 4-hydroxylase and hydroxycinnamate: CoA ligase in wheat leaves infected with Botrytis cinerea. Phytochemistry 22: 1113–1116CrossRefGoogle Scholar
  22. Mauseth JD (1979) A new method for the propagation of cacti: sterile culture of axillary buds. Cactus Succulent J 51: 186–187Google Scholar
  23. Mauseth JD, Halperin W (1975) Hormonal control of organogenesis in Opuntia polycantha ( Cactaceae ). Am J Bot 62: 869–877Google Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  25. Paré PW, Mabry TJ (1993) Chemical defense in Cephalocereus senilis (old-man-cactus) against the cactus soft rot pathogen Erwinia cacticida. Haseltonia 1: 61–64Google Scholar
  26. Paré PW, Dmitrieva N, Mabry TJ (1991) Phytoalexin aurone induced in Cephalocereus senilis liquid suspension culture. Phytochemistry 30: 1133–1135CrossRefGoogle Scholar
  27. Paré PW, Mischke CF, Edwards R, Dixon RA, Norman HA, Mabry TJ (1992) Induction of phenylpropanoid pathway enzymes in elicitor-treated cultures of Cephalocereus senilis. Phytochemistry 31: 149–154CrossRefGoogle Scholar
  28. Seeni S, Gnanam A (1980) Photosynthesis in cell suspension cultures of the CAM plant Chamaecereus sylvestrii ( Cactaceae ). Physiol Plant 49: 465–472Google Scholar
  29. Steinhart CE (1962) Tissue cultures of a cactus. Science 137: 545–546PubMedCrossRefGoogle Scholar
  30. Worchok Z.S. (1981) The role of tissue culture in preserving threatened and endangered plant species. Biol Consery 20: 83–89.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • P. W. Paré
    • 1
  • Q. Liu
    • 1
  • M. S. Bonness
    • 1
  • M. Liu
    • 1
  • R. A. Dixon
    • 2
  • T. J. Mabry
    • 1
  1. 1.Department of BotanyThe University of Texas at AustinAustinUSA
  2. 2.Plant Biology DivisionThe Samuel Roberts Noble FoundationArdmoreUSA

Personalised recommendations