Petunia hybrida: In Vitro Culture and the Production of Anthocyanins and Other Secondary Metabolites

  • M. J. M. Hagendoorn
  • L. H. W. Van der Plas
  • H. S. Van Walraven
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 37)


The South American genus Petunia (Solanaceae) consists of about 30 species. The name Petunia is derived from the Brazilian word for tobacco: petun (Sink 1984). The origin of Petunia hybrida (Fig. 1), which seems to be a hybrid of several Petunia species, is not fully understood; different Petunia hybrida cultivars may have originated from different ancestors. Restriction fragment polymorphism analysis, using the chalcon isomerase A gene, indicates that the cultivar Violet 30 (V30), with which most of the described research is carried out, is most similar to the species P. axillaris and P. parodii (Van Tunen 1990).


Phenyl Propanoid Pathway Plant Cell Tissue Organ Cult Petunia Hybrida Oxidative Pentose Phosphate Pathway Lignin Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajaj YPS (1978) Effect of superlow temperature on excised anthers and pollen embryos of Atropa, Nicotiana and Petunia. Phytomorphology 28: 171–178Google Scholar
  2. Bajaj YPS (1993) A suggested method for in vitro long-term storage at 4 °C of Chrysanthemum and Petunia germplasm. Plant Tissue Cult 3 (1): 57–58Google Scholar
  3. Beck MJ, Camper ND (1991) Shoot regeneration from Petunia leaf discs as a function of explant size configuration and benzyladenine exposure. Plant Cell Tissue Organ Cult 26: 101–106CrossRefGoogle Scholar
  4. Bernhard S (1971) Développement d’embryons haploides à partir d’anthères cultivées in vitro. Etude cytologique comparée chez le tabac et le pétunia. Rev Cytol Biol Vég 34: 165–188Google Scholar
  5. Binding H (1971) Organogenesis an Kallus von Petunia hybrida. Z Pflanzenphysiol 65: 359–364Google Scholar
  6. Boon JJ (1989) An introduction to pyrolysis mass spectrometry of lignicellulosic material: case studies on barley straw, corn stem and Agropyron. In: Chesson A, Orskov ER (eds) Physico-chemical characterisation of plant residues for industrial and feed use. Elsevier, Amsterdam, pp 25–50CrossRefGoogle Scholar
  7. Briskin DP (1990) The plasma membrane H’-ATPase of higher plant cells: biochemistry and transport function. Biochim Biophys Acta 1019: 95–109CrossRefGoogle Scholar
  8. Carceller M, Davey MR, Fowler MW, Street HE (1971) The influence of sucrose, 2,4-D and kinetin on the growth, fine structure and lignin content of cultured sycamore cells. Protoplasma 73: 367–385PubMedCrossRefGoogle Scholar
  9. Colijn CM, Kool AJ, Nijkamp HJJ (1979) An effective chemical mutagenesis procedure for Petunia hybrida cell suspension cultures. Theor Appl Genet 55: 101–106CrossRefGoogle Scholar
  10. Colijn CM, Jonsson LMV, Schram AW, Kool AJ (1981) Synthesis of malvidin and petunidin in pigmented tissue cultures of Petunia hybrida. Protoplasma 107: 63–68CrossRefGoogle Scholar
  11. Dangl JL, Hauffe KD, Lipphardt S, Hahlbrock K, Scheel D (1987) Parsley protoplasts retainGoogle Scholar
  12. differential responsiveness to UV light and fungal elicitor. EMBO J 6: 2551–2556Google Scholar
  13. De Gucht LPE (1993) Growth and respiration in chemostat cultures of Petunia hybrida cellGoogle Scholar
  14. suspensions. PhD Dissertation, Vrije Universiteit, AmsterdamGoogle Scholar
  15. Della-Cioppa G, Bauer SC, Taylor ML, Rochester DE, Klain BK, Shah DM, Fraley RT, Kishore GM (1987) Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Bio/Technology 5: 579–584CrossRefGoogle Scholar
  16. Deroles S et al. (1996) Genetic transformation in Petunia. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 38. Plant protoplasts and genetic engineering VII. Springer, Berlin Heidelberg New York (in prep.)Google Scholar
  17. DiCosmo F, Misawa M (1985) Eliciting secondary metabolism in plant cell cultures. Trends Biotechnol 3: 318–322CrossRefGoogle Scholar
  18. Dimasi-Theriou K, Economou, AS, Sfakiotakis EM (1993) Promotion of Petunia (Petunia hybrida L.) regeneration in vitro by ethylene. Plant Cell Tissue Organ Cult 32: 219–225CrossRefGoogle Scholar
  19. Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41: 339–367CrossRefGoogle Scholar
  20. Durand J, Potrykus I, Donn G (1973) Plantes issues de protoplastes de Petunia. Z Pflanzenphysiol 69: 26–34Google Scholar
  21. Eiliger CA, Benson M, Lundin RE, Waiss AC (1988) Minor petuniasterones from Petunia hybrida. Phytochemistry 27: 3597–3603CrossRefGoogle Scholar
  22. Eiliger CA, Waiss AC, Benson M, Wong RY (1993) Ergostanoids from Petunia infiata. Phytochemistry 33: 471–477CrossRefGoogle Scholar
  23. Ellis BE (1988) Natural products from plant tissue culture. Nat Prod Rep 5: 581–612PubMedCrossRefGoogle Scholar
  24. Farmer EE (1985) Effects of fungal elicitor on lignin biosynthesis in cell suspension cultures of soybean. Plant Physiol 78: 338–342PubMedCrossRefGoogle Scholar
  25. Feinbaum RL, Ausubel FM (1988) Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8: 1985–1992PubMedGoogle Scholar
  26. Gerats AGM (1991) Mutants involved in floral plant development in Petunia. Plant Sci 80: 19–26 Gunn CR, Gaffney FB (1974) Seed characteristics of 42 economically important species of Solanaceae in the United States. ARS-USDA Tech Bull 1471Google Scholar
  27. Hagendoorn MJM (1991) On the induction of the lignin and anthocyanin synthesis in Petunia hybrida Violet 30 cell suspensions. PhD Dissertation. Vrije Universiteit, AmsterdamGoogle Scholar
  28. Hagendoorn MJM, Traas TP, Boon JJ, Van der Plas LHW (1990) Orthovanadate induced lignin production, in batch and continuous cultures of Petunia hybrida. J Plant Physiol 137: 72–80CrossRefGoogle Scholar
  29. Hagendoorn MJM, Poortinga AM, Wong Fong Sang HW, Van der Plas LHW, Van Walraven HS (1991a) Effect of elicitors on the plasma membrane of Petunia hybrida cell suspensions. Plant Physiol 96: 1261–1267PubMedCrossRefGoogle Scholar
  30. Hagendoorn MJM, Zethof JLM, Van Hunnik E, Van der Plas LHW (1991b) Regulation of anthocyanin and lignin synthesis is Petunia hybrida cell suspensions. Plant Cell Tissue Organ Cult 27: 141–147CrossRefGoogle Scholar
  31. Hagendoorn MJM, Wagner AM, Segers G, Van der Plas LHW, Oostdam A, Van Walraven HS (1994) Cytoplasmic acidification and secondary metabolite production in different plant cell suspensions. A comparative study. Plant Physiol 106: 723–730Google Scholar
  32. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369CrossRefGoogle Scholar
  33. Hattori T, Ohta Y (1985) Induction of phenylalanine ammonia-lyase activation and isoflavone glucoside accumulation in suspension-cultured cells of red bean, Vigna angularis, by phytoalexin elicitors, vanadate and elevation of medium pH. Plant Cell Physiol 26: 1101–1110Google Scholar
  34. Higuchi T (1985) Biosynthesis of lignin. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Orlando, pp. 141–159Google Scholar
  35. Holden MA, Hall RD, Yeoman MM (1988) Limitations to product yield in rapidly growing cultures of Capsicum frutescens. Biochem Soc Trans 16: 66–67Google Scholar
  36. Tzhar S, Frankel R (1973) Duration of meiosis in Petunia anthers in vivo and in floral bud culture. Acta Bot Neerl 22: 14–22Google Scholar
  37. Izhar S, Power JB (1979) Somatic hybridization in Petunia: a male sterile cytoplasmic hybrid. Plant Sci Lett 14: 49–55CrossRefGoogle Scholar
  38. Jones DH (1984) Phenylalanine ammonia-lyase: regulation of its induction, and its role in plant development. Phytochemistry 23: 1349–1359CrossRefGoogle Scholar
  39. Kneusel RE, Matern U, Nicolay K (1989) Formation of trans-Caffeoyl-CoA from trans-4-coumaroylCoA by Zn’ -dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH shift. Arch Biochem Biophys 269: 455–462PubMedCrossRefGoogle Scholar
  40. Kochs G, Welle R, Grisenbach H (1987) Differential induction of enzymes in soybean cell cultures by elicitor or osmotic stress. Planta 171: 519–524CrossRefGoogle Scholar
  41. Koes RE, Quattrocchio F, Mol JNM (1994) The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16: 123–132Google Scholar
  42. Leguay JJ, Jouanneau JP (1987) Auxin (2,4-dichlorophenoxyacetic acid) starvation and treatment with glucan elicitor isolated from Phytophthora megasperma induce similar responses in soybean-cultured cell suspensions. Dev Genet 8: 351–364CrossRefGoogle Scholar
  43. Lewis-Smith AC, Chamberlain M, Smith SM (1990) Genetic and chromosomal variation in Petunia hybrida plants regenerated from protoplast and callus cultures. Biol Plant 32: 247–255CrossRefGoogle Scholar
  44. Meyer P, Heidmann I (1994) Epigenetic variants of a transgenic Petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. MolGoogle Scholar
  45. Gen Genet 243: 390–399Google Scholar
  46. Nakamura I, Dube PH, Beachy RN (1993) Accumulation of the products of ß-conglycinin a’-subunit gene constitutively expressed in seeds and non-seed tissue of the transgenic Petunia plants. Plant Cell Physiol 34: 865–872Google Scholar
  47. Oh, MH, Kim SG (1994) Plant regeneration from petal protoplast culture of Petunia hybrida. Plant Cell Tissue Organ Cult 36: 275–283CrossRefGoogle Scholar
  48. Ojalvo I, Rokem JS, Navon G, Goldberg I (1987) 31P NMR study of elicitor treated Phaseolus vulgaris cell suspension cultures. Plant Physiol 85: 716–719Google Scholar
  49. Ozeki Y, Komamine A (1985) Effects of inoculum density, zeatin and sucrose on anthocyaninGoogle Scholar
  50. accumulation in a carrot suspension culture. Plant Cell Tissue Organ Cult 5: 45–53Google Scholar
  51. Phillips R, Darrell NJ (1992) Pigment production in hormone-autonomous cell cultures following somatic fusion of petal and tumour protoplasts of Petunia hybrida. Plant Sci 83: 95–102CrossRefGoogle Scholar
  52. Piringer AA, Cathey HM (1960) Effect of photoperiod, kind of supplemental light, and temperature on the growth and flowering of Petunia plants. Proc Am Soc Hortic Sci 76: 649–660Google Scholar
  53. Power JB, Berry SF, Chapman JV, Cocking EC (1980) Somatic hybridization of sexually incompatible petunias: Petunia parodii, Petunia parviflora. Theor Appl Genet 57: I - 4Google Scholar
  54. Pryke JA, ap Rees T (1977) The pentose phosphate pathway as a source of NADPH for lignin synthesis. Phytochemistry 16: 557–560CrossRefGoogle Scholar
  55. Quattrocchio F, Wing JF, Leppen HTC, Mol JMN, Koes RE (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5: 1497–1512PubMedGoogle Scholar
  56. Rao PS, Handro W, Harada H (1973) Hormonal control of differentiation of shoots, roots and embryos in leaf and stem cultures of Petunia infiata and P. hybrida. Physiol Plant 28: 458–463 Raquin C, Pilet V (1972) Production de plantules à partir d’anthères de pétunies cultivées in vitro.Google Scholar
  57. CR Séances Acad Sci Paris Sér D 274: 1019–1022Google Scholar
  58. Renaudin JP, Tournaire C, Brillat M, De la Serve BT (1990) Sequential hormone requirement of growth and organogenesis of Petunia hybrida protoplast-derived calli. Plant Sci 72: 239–250CrossRefGoogle Scholar
  59. Renelt A, Coiling C, Hahlbrock K, Nürnberger T, Parker JE, Sacks WR, Scheel D (1993) Studies on elicitor recognition and signal transduction in plant defence. J Exp Bot 44 Suppl: 257–268Google Scholar
  60. Rogers KR, Anderson AJ (1987) The effect of extracellular components from Colletotrichum lindemuthianum on membrane transport in vesicles isolated from bean hypocotyl. Plant Physiol 84: 428–432PubMedCrossRefGoogle Scholar
  61. Scheel D, Parker JE (1990) Elicitor recognition and signal transduction in plant defence gene activation. Z Naturforsch 45c: 569–575Google Scholar
  62. Shingu K, Fujii H, Mizuki K, Ueda I, Yahara S, Nohara T (1994) Ergostane glycosides from Petunia hybrida. Phytochemistry 36: 1307–1314PubMedCrossRefGoogle Scholar
  63. Sink KC (ed) (1984) Monographs on theoretical and applied genetics 9: Petunia. Springer, Berlin Heidelberg New YorkGoogle Scholar
  64. Steffens M, Ettl F, Kranz D, Kindl H (1989) Vanadate mimics effects of fungal cell wall in eliciting gene activation in plant cell cultures. Planta 177: 160–168CrossRefGoogle Scholar
  65. Tabaeizadeh Z, Bergounioux C, Demarly Y (1989) Lycopersicon + Petunia somatic hybrids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 8. Plant protoplasts and genetic engineering I. Springer, Berlin Heidelberg New York, pp 336–355Google Scholar
  66. Terashima N, Fukushima K, Takabe K (1986) Heterogeneity in formation of lignin VIII: an auto-radiographic study on the formation of guaiacyl and syringyl lignin in Magnolia kobus DC. Holzforschung 40 Suppl: 101–105Google Scholar
  67. Van Emmerik WAM, Wagner AM, Van der Plas LHW (1992) A quantitative comparison of respiration in cells and isolated mitochondria from Petunia hybrida. J Plant Physiol 139: 390–396CrossRefGoogle Scholar
  68. Van Emmerik WAM, Wagner AM, Zwiers JH, Van der Plas LHW (1993) The regulation of respiration in cell suspensions of Petunia hybrida, studied by inhibiting mitochondrial protein synthesis with chloramphenicol. Physiol Plant 88: 251–258CrossRefGoogle Scholar
  69. Van Tunen AJ (1990) Regulation of flavonoid biosynthesis in Petunia. PhD Dissertation, Vrije Universiteit, AmsterdamGoogle Scholar
  70. Van Tunen AJ, Koes RE, Spelt CE, Van der Krol AR, Stuitje AR, Mol JNM (1988) Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J 7: 1257–1263PubMedGoogle Scholar
  71. Vogt T, Pollack P, Tarlyn N, Taylor LP (1994) Pollination or wound-induced kaempferol accumulation in stigmas enhances seed production. Plant Cell 6: 11–23PubMedGoogle Scholar
  72. Ylstra B, Busscher J, Franken J, Hollman PCH, Mol JNM, Van Tunen AJ (1994) Flavonols and fertilization in Petunia hybrida: localization and mode of action during pollen tube growth. Plant J 6: 201–212CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. J. M. Hagendoorn
    • 1
  • L. H. W. Van der Plas
    • 1
  • H. S. Van Walraven
    • 2
  1. 1.Department of Plant PhysiologyAgricultural UniversityWageningenThe Netherlands
  2. 2.Department of Physiology and Biochemistry of PlantsIMBW, Vrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations