Advertisement

Paeonia Species: In Vitro Culture and the Production of Triterpenes

  • A. Ikuta
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 37)

Abstract

Paeoniaceous plants have been an important source of crude drugs in traditional Chinese medicine; they are used as a circulatory tonic and diuretic, and prescribed for women’s diseases, weakness, night sweat, and lumbar pain.

Keywords

Callus Tissue Oleanolic Acid Betulinic Acid Tree Paeony Methyl Gallate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asif M, Shamim M, Mannan A, Itho T, Matsumoto T (1983) Analysis of Paeonia emodi root oil. J Am Oil Chem Soc 60: 581–583CrossRefGoogle Scholar
  2. Bouza L, Jacque M, Sotta B, Miginiac E (1993) The differential effect of N6-benzyl-adenine and N6-(A2-isopentenyl)-adenine on in vitro propagation of Paeonia suffruticosa Andr. is correlated with different hormone contents. Plant Cell Rep 12: 593–596CrossRefGoogle Scholar
  3. Bouza L, Jacque M, Sotta B, Miginiac E (1994a) The reactivation of tree peony (Paeonia suffruticosa Andr.) vitroplants by chilling is correlated with modifications of abscisic acid, auxin cytokinin levels. Plant Sci 93: 153–160CrossRefGoogle Scholar
  4. Bouza L, Jacques M, Miginiac E (1994b) In vitro propagation of Paeoniu suffruticosa Andr. cv. Mme de Vatry: developmental effects of exogenous hormones during the multiplication phase. Sci Hortic 57: 241–251CrossRefGoogle Scholar
  5. Buchheim JAT, Meyer MM (1992) Micropropagation of peony (Paeonia spp.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 20. High tech and micropropagation IV. Springer, Berlin Heidelberg New York, pp 269–285Google Scholar
  6. Buchheim JAT, Burkhart LF, Meyer MM Jr (1994) Effect of exogenous gibberellic acid, abscisic acid, and benzylaminopurine on epicotyl dormancy of cultured herbaceous peony embryos. Plant Cell Tissue Organ Cult 36: 35–43CrossRefGoogle Scholar
  7. Ching LH, Maw CH (1991) Phytochemical and pharmacological study on Paeonia suffruticosa (1)-isolation of acetophenones. Chung-hua Yao Hsueh Tsa Chih 43: 175 ? 177 cf. CA, 99062z, 115]Google Scholar
  8. Delgado G, Cardenas X, Alvarez L, Romo de Viver A, Pereda-Miranda R (1986) New oleanane and isopimarane terpenoids from Lepechinia glomerata. J Chem Res Synop 286–287, (M) 2565Google Scholar
  9. Evans MR, Anderson NO, Wilkins HF (1990) Temperature and GA3 effects on emergence and flowering of potted Paeoniu lactiflora. Hortscience 25: 923–924Google Scholar
  10. Fukuhara Y, Yoshida D (1987) Paeonol: a bio-antimutagen isolated from a crude drug, Moutan cortex. Agric Biol Chem 51: 1441–1442Google Scholar
  11. Gildow FE, Mitchell JP (1977) Initiation, growth and nuclear characteristics of tissue cultures of Paeonia suffruticosa. Physiol Plant 39: 295–298CrossRefGoogle Scholar
  12. Haisheng C, Shixuan L, Zhizun H (1993) Chemical constituents of Paeonia veitchii Lynch. Zhongguo Yaoxue Zazhi 28: 137 ? 138 cf CA, 4966t, 119]Google Scholar
  13. Hamada M, Hosoki H, Maeda T (1990) Shoot length control of tree peony (Paeonia suffruticosa) with uniconazole and paclobutrazol. Hortscience 25: 198–200Google Scholar
  14. Harris RA, Mantell SM (1991) Effects of stage II subculture durations on the multiplication rate and rooting capacity of micropropagated shoots of tree paeony (Paeonia suffruticosa Andr.). J Hortic Sci 66: 95–102Google Scholar
  15. Hikino H, Nabetani S, Takemoto T (1969) Microbial transformation of oleanolic acid (1). Yakugaku Zasshi 89: 809–813PubMedGoogle Scholar
  16. Hong-yuan X (1986) Studies on the isolation, identification and bioactivities of doucosterol in the roots of Paeonia lactiflora. Acta Bot Sin 28: 169–174Google Scholar
  17. Hosoki T, Seo M (1991) Flower anthocyanins of herbaceous peony. Bull Fac Agric Shimane Univ 25: 11–14Google Scholar
  18. Ikuta A (1993) Stauntonia hexaphylla; in vitro culture and the production of triterpenes. In: Bajaj YPS (ed) Biotechnology in agriculture and foresty, vol 24. Medicinal and aromatic plants V. Springer, Berlin Heidelberg New York, pp 352–360Google Scholar
  19. Ikuta A (1995) New saponins and triterpenes from callus tissues of Akehin trifoliata and comparison of their compounds among lardizabalaceous callus tissues. J Nat Prod 58: 1378–1383CrossRefGoogle Scholar
  20. tkuta A, Itokawa H (1986) Triterpenoids of Akebia quinata callus tissue. Phytochemistry 25: 1626–1628Google Scholar
  21. Ikuta A, Itokawa H (1988a) A triterpene from Akebia quinata callus tissue. Phytochemistry 27: 3809–3810CrossRefGoogle Scholar
  22. tkuta A, Itokawa H (1988b) Triterpenoids of Paeonia japonica callus tissue. Phytochemistry 27: 2813–2815CrossRefGoogle Scholar
  23. Ikuta A, Itokawa H (1989a) 30-Noroleanane saponins from callus tissues of Akebia quinata. Phytochemistry 28: 2663–2665Google Scholar
  24. Ikuta A, Itokawa H (1989b) The triterpenes from Stauntonia hexaphylla callus tissues and their biosynthetic significance. J Nat Prod 52: 623–628CrossRefGoogle Scholar
  25. Ikuta A, Kamiya K, Satake T (1994) Triterpenes from paeoniaceous plant callus tissues and comparison of their compounds among them from a chemotaxonomic point of view. VIIIth Int Congr on Plant Tissue and Cell Culture Amsterdam, pp 242 (S18–32)Google Scholar
  26. Ikuta A, Kamiya K, Satake T, Saiki Y (1995) Triterpenoids from callus tissue of Paeonia species. Phytochemistry 38: 1203–1207CrossRefGoogle Scholar
  27. Inagaki I, Hisada S, Noro Y (1958) On the constituents of peony root I. Annu Rep Pharm Sci Nagoya City Univ 6: 32–34Google Scholar
  28. James AC, Harris RA, Mantell SH (1996) Paeonia species (tree peonies). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 35. Trees IV. Springer, Berlin Heidelberg New York, pp 244–268Google Scholar
  29. Jin Y, Huiyaing L, Peigen X (1986) A new compound, apiopaeonoside, isolated from the root of Paeonia suffruticosa. Yaoxue Xuebao 21: 191 ? 197 cf. CA, 3559m, 105]Google Scholar
  30. Kadota S, Terashima S, Basnet P, Kikuchi T, Namba T (1993) Palbinone, a novel terpenoid from Paeonia albifiora; potent inhibitory activity on 3a-hydroxysteroid dehydrogenase. Chem Pharm Bull 41: 487–490PubMedCrossRefGoogle Scholar
  31. Katoh Y, Hayashi T (1985) Contents of gallotannins and paeoniflorin in callus of paeony (Paeonia lactìfbra Pall.) Hokkaidoritsu Eisei Kenkyushoho 35: 95 ? 97 cf. CA, 182648p, 104]Google Scholar
  32. Katoh Y, Hayashi T (1987) Change of paeniflorin content in paeony callus during root formation. Hokkaidoritsu Eisei Kenkyushoho 37: 74 ? 77 cf. CA, 72271k, 108]Google Scholar
  33. Kitagawa I, Kitazawa K, Yoshikawa I (1972) Photochemical transformation leading to euteleogenin ( I). Tetrahedron 28: 907Google Scholar
  34. Kumar N, Motto MG (1986) Volatile constituents of peony flowers. Phytochemistry 25: 250–253CrossRefGoogle Scholar
  35. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  36. Schenk RU, Hildebrandt AC (1972) Medium and techniques for the induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204CrossRefGoogle Scholar
  37. Shoyama Y, Yamada Y, Nishioka 1, Matsunaka H (1990) Depigmentation and inhibition of cell growth of B-16 melanoma cells by compounds isolated from Paeonia suffruticosa callus. Plant Cell Rep 8: 711–713CrossRefGoogle Scholar
  38. Sik KS, Hyun SK, Joon CH (1989) Galloylpaeoniflorin, a new monoterpene glycoside from peony roots. Saengyak Hakhoechi 20: 48 ? 49 cf. CA, 160062k, 111]Google Scholar
  39. Sik KS, Hyun SK, Joon CH (1991) Galloylpaeoniflorin, a new acylated monoterpene glucoside from paeon root. Arch Pharm Res 14: 52 ? 54 cf. CA, 142082v, 115]CrossRefGoogle Scholar
  40. Stolid D, Gorunovié M (1989) Paeoniflorin in the subterranean organs of the peony (Paeonia tenuifolia L Paeoniaceae). Pharmazie 44: 510 cf CA, 212001m, 111]Google Scholar
  41. Stolid D, Gorunovié M, Skaltsounis AL, Tillequin F, Koch M (1988) New flavonoid glycosides from Paeonia tenuifolia L.. HeIv Chim Acta 71: 348–353CrossRefGoogle Scholar
  42. Stolid D, Gorunovié M, Skaltsounis AL (1989) Flavone glycosides of Paeonia tenuifolia L. leaves. Plant Med Phytother 23: 275 ? 282 cf. CA, 18205w, 114]Google Scholar
  43. Takazawa H, Ikuta A (1994) Study of actinidiaceous plant tissue culture (2). 114th Annu Meet Pharmaceutical Society of Japan, Tokyo Abstr No 2, 29 [21]; 3–2, 180 ppGoogle Scholar
  44. Yamamoto H (1988) Paeonia spp.: In vitro culture and the production of paeoniflorin. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 4. Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York, pp 464–483Google Scholar
  45. Yamamoto H, Machida A, Tomimori T (1982) Growth and paeoniflorin production in Paeonia lactiflora callus tissues. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 351–352Google Scholar
  46. Yamamoto H, Kitayama A, Tomimori T (1985) Root differentiation and paeoniflorin in Paeonia lactiflora callus tissues. Shoyakugaku Zasshi 39: 185–189Google Scholar
  47. Yoshikawa M, Wang HK, Tosirisuk V, Kitagawa I (1982) Chemical modification of oleaneneoligoglycosides by means of anodic oxidation. Chem Pharm Bull 30: 3057–3060CrossRefGoogle Scholar
  48. Yoshikawa M, Uchida E, Kawaguchi A, Kitagawa I, Yamahara J (1992) Galloyl-oxypaeoniflorin, suffruticosides A, B, C, and D, five new antioxidative glycosides, and suffruticoside E, a paeonol glycoside, from Chinese Moutan cortex. Chem Pharm Bull 40: 2248–2250Google Scholar
  49. Yoshikawa M, Harada E (nee Uchida), Kawaguchi A, Yamahara J, Murakami N, Kitagawa I (1993) Absolute sterostructures of paeonisuffrone and paeonisuffral, two new labile monoterpenes, from Chinese moutan cortex. Chem Pharm Bull 41: 630–632Google Scholar
  50. Yoshikawa M, Harada E, Minematsu T, Muraoka O, Yamahara J, Murakami N Kitagawa I (1994) Absolute sterostructures of paeonisothujone, a novel skeletal monoterpene ketone, and deoxypaeonisuffrone, and isopaeonisuffral, two new monoterpenes, from Moutan cortex. Chem Pharm Bull 42: 736–738CrossRefGoogle Scholar
  51. Yu J, Elix JA, lskander MN (1990) Lactiforin, a monoterpene glycoside from paeony root. Phytochemistry 29: 3859–3863CrossRefGoogle Scholar
  52. Wang D, Du S, Song S, Liu M, Du Z, Wu L (1992) Chemical constituents of Paeonia japonica Miyabe et Takeda. Shenyang Yaoxueyuan Xuebao 9: 217 ? 218 cf. CA, 68054b, 119]Google Scholar
  53. Zenkteler M, Misiura E, Ponitka A (1975) Induction of androgenetic embryoids in the in vitro cultured anthers of several species. Experientia 3: 289–291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • A. Ikuta
    • 1
  1. 1.Research Institute for SciencesScience University of TokyoYamazaki, Noda City, ChibaJapan

Personalised recommendations